

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 1 of 31

1.	Teaching Institution	University of Technology Bahrain (UTB)
2.	University Department	College of Engineering (COE)
3.	Programme Title	Bachelor of Science in Informatics Engineering (BSIE)
4.	Title of Final Award	Bachelor of Science in Informatics Engineering (BSIE)
5.	Mode of Attendance	Actual classroom learning-interactive (Full-time)
6.	Delivery Mode	On-campus (Traditional Learning)
7.	National Qualification	NQF Level 8
	Framework Level and Credit	612 NQF Credits (204 ACS Credits)
8.	Accreditation	ABET-EAC
9.	Other external influences	Local External Influences/References
		- Ministry of Education (MOE), Higher Education Council (HEC)
		- Education and Training Quality Authority (BQA)
		International External Influences/References
		 Accreditation Board for Engineering and Technology (ABET)
10.	Date of production/revision	September 2023
	of this specification	

11. Aims of the Programme

The Bachelor of Science in Informatics Engineering (BSIE) is an engineering programme which combines computer technology with engineering concepts. It is an interdisciplinary scientific area focusing on the application of advanced computing, information and communication technologies to engineering. It covers the design and development of intelligent engineered products and processes enabled by the integration of computers, control systems and software engineering technologies.

The objectives of the Informatics Engineering programme are to produce graduates who will be able:

- 1. Pursue careers in Informatics Engineering or related fields towards the improvement of engineering practice.
- 2.Engage in lifelong learning toward completion of advanced/continuing education or other learning opportunities.
- 3. Demonstrate professional success through strengthened networks and/or positions of increasing social responsibility.

12. Programme Intended Learning Outcomes

At the completing the programme, the student will be able to:

- 1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- 2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 2 of 31

factors

- 3. Communicate effectively with a range of audiences
- 4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions s
- 7. Acquire and apply new knowledge as needed, using appropriate learning strategies

Teaching and Learning Methods

- 1.Constructive Method: Students are required to be fully engaged and active in the process of constructing meaning and knowledge based on their prior knowledge and experiences through the process of doing, making, writing, designing, creating and solving. Teachers implement differentiated learning, authentic assessment practices and incorporate technologies to improve individual learning experiences. It includes simulations, in-course projects, digital content, group discussions and reflections. This method strives to improve achievement by consciously developing students' ability to consider ideas, analyze perspectives, solve problems and make decisions on their own, thereby making them more responsible and independent.
- 2. Inquiry based Method. Students develop cognitive skills like critical thinking and problem solving by working on questions, problems, or scenarios and formulating creative solutions. The teachers use structured, guided or open inquiry to facilitate learning. As a process, students are involved in their learning by formulating questions, investigating, building their understanding and creating meaning and new knowledge on a certain lesson. Typically, activities include laboratory sessions.
- 3. Collaborative Method. Students are divided into small groups to learn something together and capitalize on one's other resources and skills, evaluating one another's ideas, and monitoring one another's work. It allows students to actively interact by sharing experiences and take on different roles. Typically, students are provided with problems or projects that they work on together to search for understanding, meaning, or solutions and each group is expected to work together developing or formulating solutions and present the solution in class. The activities include think-pair-share, jigsaw, or round-robin which effectively engage students to complete the tasks.
- 4. Experiential learning method. By engaging students to hands on experience which attempts to apply theories and knowledge learned in the classroom to real-world situations. This includes team challenges, simulations, internships, capstone projects, and other extracurricular activities.

Assessment Methods

Assessment is through a combination of written examinations (essays, class tests, homework) and assessed coursework (final in-course project, problem sets, laboratory exercises and machine problems).

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 3 of 31

13. Programme Structure

BACHELOR OF SCIENCE IN INFORMATICS ENGINEERING (BSIE)

CURRICULUM PLAN EFFECTIVE AY 2022-2023

FOUNDATION COURSES

COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
		Hrs	Hrs	UNITS	
ENGL500	English Foundation Course	12	0	0	
MATH500	Remedial Mathematics	3	0	0	

FIRST YEAR

FIRST TRIMESTER

COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
		Hrs	Hrs	Units	
ARAB600	Arabic Language	3	0	3	
CHEM611	General Chemistry	2	2	3	
IENF611	Introduction to Computing	2	2	3	
ENGL611	English Communication Skills 1	3	0	3	
EUTH500	Euthenics	1	0	0	
MATH631	Calculus 1	5	0	5	
TOTAL					

SECOND TRIMESTER

COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
		Hrs	Hrs	Units	
IENF621	Computer Programming	2	2	3	IENF611
ENGL621	English Communication Skills 2	3	0	3	ENGL611
HIST600	History of Bahrain and GCC Region	3	0	3	
MATH711	Calculus 2	5	0	5	MATH631
HUMR600	Human Rights	3	0	3	
TOTAL					

COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
		Hrs	Hrs	Units	
IENF631	Advanced Programming	2	2	3	IENF621
ENGL631	Speech and Oral Communication	2	2	3	ENGL621
SCIE631	Biology	2	2	3	
MATH621	Probability and Statistics	3	0	3	

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 4 of 31

PHYS631	University Physics 1	2	2	3	MATH631
ENVS711	Environmental Science	3	0	3	
TOTAL				18	

SECOND YEAR

FIRST TRIMESTER

COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
		Hrs	Hrs	Units	
IENF711	Data Structures and Algorithm	2	2	3	IENF631
ENGL711	Technical Writing	3	0	3	ENGL621
ENGG711	Engineering Drawing	2	2	3	
MATH722	Advanced Mathematics	3	0	3	MATH711
MATH622	Discrete Mathematics	3	0	3	MATH631
PHYS711	University Physics 2	2	2	3	PHYS631,
PH13/11	Offiversity Frigsics 2			3	MATH711
		TOTAL	18		

SECOND TRIMESTER

COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
		Hrs	Hrs	Units	
ENGG721	Electric Circuit Theory 1	2	2	3	PHYS711
IENF721	Principles of Communications	2	2	3	PHYS631
IENF722	Database Systems	2	2	3	IENF711
IENF723	Introduction to Data Science	2	2	3	IENF711
MATH731	Multivariate Calculus	2	2	3	MATH711
PHYS722	University Physics 3	2	2	3	PHYS711
			TOTAL	18	

COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
		Hrs	Hrs	Units	
ENGG734	Signals and Systems	2	2	3	ENGG721
ENGG733	Engineering Economy	3	0	3	MATH621
ENGG731	Electronics 1	2	2	3	ENGG721
ENGG732	Electric Circuit Theory 2	2	2	3	ENGG721
MATH732	Numerical Methods and Analysis	2	2	3	MATH722
MATH733	Linear Algebra	2	2	3	MATH731
		•	TOTAL	18	

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 5 of 31

THIRD YEAR

FIRST TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
ENGG813	Digital Logic Design	2	2	3	ENGG731
IENF811	Computer Networks 1	2	2	3	IENF721
ENGG812	Electronics 2	2	2	3	ENGG731
IENF812	Artificial Intelligence	2	2	3	IENF723
ENGG811	Electromagnetics	3	0	3	ENGG732
MATH821	Optimization Methods	3	0	3	MATH732
			TOTAL	18	

SECOND TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF821	Computer Networks 2	2	2	3	IENF811
IENF822	Advanced Digital Logic Design	2	2	3	ENGG813
IENF823	Computer Organization and Architecture	2	2	3	ENGG813
IENF824	Power Electronics	2	2	3	ENGG812
ENGG821	Control Systems	2	2	3	ENGG734
ENGG831	Engineering and Project Management	3	0	3	ENGG733
		•	TOTAL	18	

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF831	Computer Networks 3	2	2	3	IENF821
IENF832	Operating System	2	2	3	IENF722
IENF833	Machine Vision	2	2	3	IENF812
IENF834	Systems Analysis and Design	2	2	3	IENF722
IENF835	Cloud Computing	2	2	3	IENF821
ENGG842	Safety Engineering	2	0	2	IENF824
			TOTAL	17	

	Doc. No.	QR-AAD-01			
Revision No.		02			
	Date of Effectivity	01-09-24			

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 6 of 31

FOURTH YEAR

FIRST TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF841	Digital Systems Design using HDL	2	2	3	IENF822
IENF842	Wireless Communication Systems	2	2	3	IENF821
ENGG841	Technopreneurship	3	0	3	ENGG831
IENF843	Enterprise Networking	2	2	3	IENF821
IENF844	Microcontroller and Embedded Systems	2	2	3	IENF823
ENGG851	Professional Ethics and Engineering Laws	3	0	3	ENGG831
		18			

SECOND TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF851	Software Engineering	2	2	3	IENF832
IENF852	Major Elective 1	2	2	3	IENF821
IENF853	Major Elective 2	2	2	3	IENF832
IENF854	Major Elective 3	2	2	3	ENGG821
IENF855	Informatics Engineering Design Project A	0	6	3	Completion of 162 Credit Units
IENF856	Robot Kinematics, Dynamics and Control	2	2	3	ENGG821
		TOTAL	18		

	·	,			
COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF861	Industrial Attachment	0	6	6	IENF844
IENF862	Informatics Engineering Design Project B	0	6	3	IENF855
TOTAL					
Grand Total				204	

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 7 of 31

ELECTIVE COURSES

MAJOR ELECTIVE 1

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF852A	Cryptographic Systems	2	2	3	IENF821
IENF852B	Network Security	2	2	3	IENF821
IENF852C	Ethical Hacking	2	2	3	IENF821

MAJOR ELECTIVE 2

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF853A	Microprocessor Systems	2	2	3	IENF832
IENF853B	Data Mining	2	2	3	IENF832
IENF853C	Parallel and Distributed Computing	2	2	3	IENF832

MAJOR ELECTIVE 3

COURSE	SE COURSE TITLE		LAB	CREDIT	PREREQUISITE(S)
CODE	ODE		Hrs	Units	
IENF854A	Special Topics in Computer Engineering	2	2	3	ENGG821
IENF854B	Digital Control Systems	2	2	3	ENGG821
IENF854C	Industrial Control Systems Design	2	2	3	ENGG821

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 8 of 31

14. Awards and Credits	
Degree/ Certificate Awarded	Bachelor of Science in Informatics Engineering
Total Units for Degree	204
Total Trimesters Completed	12 trimesters

15. Admission Criteria

Admissions Criteria for Undergraduate Students

A. For First Year Undergraduate Applicants

Acceptance to the University depends on the following admissions requirements:

- 1. Filled out an admission application form.
- 2. Minimum secondary school scores 60% or its equivalent.
- 3. Online Placement test (Oxford Online Placement Test (OOPT)) Result (if needed)
- 4. Submission of all required documents stated in the Admissions Policy.

To be admitted to any undergraduate programme, the applicant must satisfy the minimum secondary school grades or its equivalent without the need to take the remediation classes of English and Math, as shown in the following table:

	Subtest Component for	
Bahraini, KSA, Kuwait, Qatar, Yemen, Switzerland, USA, and		BSIE
	Ecuador Qualification	
	Science/ Technical/General Track	At least 70% or C
	Commercial Track	At least 80% Or B
Mathematics	Literature and Islamic Tracks	All must undergo remedial
		mathematics
Science	-	60
English	-	At least 80 or B

^{*}This is applicable to Bahraini and similarly equivalent qualification

1. Private school

Private school graduates with English as their medium of instruction are eligible for the exemption from the foundation program.

	Subtest Component for	DCIE			
Other Qualificati	on (Indian, Pakistan, and West African)	BSIE			
	Science/ Technical/General Track	At least 51 or C1			
Commercial Track		At least 71 or B1			
Mathematics	Literature and Islamic Tracks	All must undergo remedial mathematics			
Science	-	60			
English	-	At least 71 or B1			

^{*}Note: Science component is subject to the evaluation of the Dean.

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 9 of 31

For the undergraduate applicant who did not meet the minimum required secondary school grades in Mathematics and English or its equivalent, his/her admissions depend on the following criteria:

Programme	Secondary School Grade	Placement Test in English (OOPT)	Remarks		
All Programmes	60-79 % grade in English	Score ≥ 51 %	No need for Foundation Course in English		
		Score < 51 %	Foundation Course in English		
	For Scientific, General, and technical Track: Score 50-69% in Math	N/A	Foundation Course in Math		
BSIE	Literature and Islamic Tracks	N/A	Foundation Course in Math		
	Commercial Track: Score 50-79%	N/A	Foundation Course in Math		
All Programmes	CGPA <60% for Bahraini and KSA CGPA <41% for Indian and Pakistan	N/A	Will be subjected to 5% admission rule of UTB (As explained under note)		

^{*}This is applicable to Bahraini and similarly equivalent qualification

a. Secondary Grade in English

A qualified applicant for all programmes whose secondary school grade in English is within 60-79%, needs to take the placement test in English (OOPT). If the OOPT test result is 51 or above, applicant will not take remediation course in English. However, if the result is lower than 51, applicant will take remediation course in English.

b. Private school

Private school graduates with English as their medium of instruction are eligible for the exemption from the foundation program (English Foundation).

c. IELTS/TOEFL

Applicants who submit official IELTS or TOEFL certificates issued by accredited examination centers, with a minimum score of 450 on the TOEFL (paper-based), 131 on the TOEFL (computer-based), or 5.0 on the IELTS, are exempted from taking the required English Placement Test.

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 10 of 31

In addition, applicants who obtain an IELTS score of 5.5 or higher or a TOEFL score that meets the equivalent standard may qualify for English course exemptions based on their results. This policy recognizes academic achievement by allowing eligible students to be exempted from enrolling in introductory English courses upon admission.

IELTS/TOEFL Scores	Exemption		
Qualified applicants with 5.5 IELTS	Satisfying this requirement means to be		
scores or	exempted from taking ENGL401/ENGL611		
TOEFL: 496 (paper-based) or 169	(English Communication Skills 1)		
(computer based)			
Qualified applicants with 6.0 IELTS	Satisfying this requirement means to be		
scores or	exempted from taking ENGL401/ENGL611		
TOEFL: 546 (paper-based) or 211	and ENGL402/ENGL621		
(computer based)	(English Communication Skills 1 and 2)		

d. Secondary Grade in Math

A qualified applicant for BSME, BSEnE, BSIT, BSBI, and BSAF programmes who has a secondary grade score in Math of 50-79% for commercial track and 50-69% for scientific and technical tracks and lower than 60% for the BSIB programme must take the remediation course in Math. All qualified applicants for BSCS and BSIE programmes coming from the literature and Islamic tracks must take the remediation course in Math.

e. Secondary Grade in Science

A qualified applicant for BSME, BSIE, BSEnE, BSCS, BSIT, BSBI, and BSAF programmes who has a secondary grade score in science of lower than 60% must take tutorial class in general science before taking any university-level science course.

Note: UTB can accept new students equivalent to 5% of the total enrollment where student applicant has a CGPA below 60% but not lower than 50% from Bahraini Schools; below 41% but not lower than 33% from Indian and Pakistan Schools; and for other non-Bahrain based Schools, it will be based on the passing mark of the school. 5% is subject to strict evaluation by the dean and the applicant's score in the OOPT and the secondary school grades.

B. For Undergraduate Transfer Student Applicants

Application Requirements:

- 1. Completely filled out an admission application form
- 2. Official Transcript of Records (TOR) from the university previously attended. Rules and regulations of the HEC-Bahrain regarding the authentication of foreign certificates and private school certificates are to be applied when necessary.

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 11 of 31

- 3. Course description of all completed courses for which transfer credit is sought (authenticated by the originating university)
- 4. Certificate of Transfer from the university previously attended stamped by MOE, if any.
- 5. Withdrawal Certificate stamped by MOE
- 6. Submission of all required documents stated in the admissions policy.

Admissions Requirements:

- a. For Bahrain and KSA qualifications, the applicant should have at least a secondary school average of 60%. For non-Bahrain secondary qualifications (Indian and Pakistan) the applicant should have at least 41% secondary school average; and for other non-Bahraini qualifications please refer to the table of cut-off.
- b. If the applicant has taken and passed courses in English and Mathematics in the previous university, the applicant will be exempted in taking the remedial courses in both English and Mathematics. The applicant may proceed to mainstream university courses and is eligible to apply for credit transfer.
- c. If the applicant has not taken any course in English and Mathematics, the basis for evaluation whether remedial course in English and mathematics is required or not is the subject scores in his/her last year in the secondary school certificate using the table presented earlier.

The transfer of course credits is accepted at UTB provided that courses applied for crediting are equivalent to the courses where credit will be transferred. Practicum (Internship) course is eligible for credit transfer with the same practicum (internship) course from another university or re-admitted student from UTB.

The University requires the undergraduate student to complete at least 50% of the required credit units/hours of a programme in residence at UTB. The maximum credit units/hours that are eligible for transfer credits should not exceed two-thirds (66%) of the required credit units/hours based on his/her original degree from another university.

16. CGPA Requirement for Graduation

The required CGPA for an undergraduate student to be eligible for graduation is 2.0 out of 4.

17. Career Pathways

The BSIE graduates can pursue a career as network engineer, control engineer, network analyst/administrator, production engineer, systems developer, computer/software engineer, sales engineer, technical instructor/trainer. In addition, the programme can lead graduates for postgraduate degrees in engineering.

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 12 of 31

18.	BSIE CURRICULUM SKILLS MAPPING									
			Core (C)							
Year/	Course	Course Title	or		g g					
Level	Code	Course Title	Option	SO1	SO2	SO3	SO4	SO5	SO6	SO7
			(E)	301	302	303		303	300	307
	ARAB600	Arabic Language	(C)				✓			
	CHEM611	General Chemistry	(C)	✓				✓	✓	✓
Year	IENF611	Introduction to	(C)	✓	√			√	✓	√
1		Computing		Ť	·			•	·	·
1st	ENGL611	English	(C)			√				
Tri		Communication Skills 1				Ť				
	EUTH500	Euthenics	(C)							
	MATH631	Calculus 1	(C)	✓						
	IENF621	Computer	(C)	√	√		√	√	√	
		Programming							_	
Year	ENGL621	English	(C)			√				
1		Communication Skills 2				•				
2nd	HIST600	History of Bahrain and	(C)				√			
Tri		GCC Region					•			
	MATH711	Calculus 2	(C)	✓						
	HUMR600	Human Rights	(C)				✓			
	IENF631	Advanced	(C)	√	√		√	√	✓	
		Programming		•	•		•	V	'	
	ENGL631	Speech and Oral	(C)			√				
Year		Communication				•				
1	SCIE631	Biology	(C)	✓				✓	✓	
3rd	MATH621	Probability and	(C)	√						
Tri		Statistics		,						
	PHYS631	University Physics 1	(C)	√				√	√	
	ENVS711	Environmental Science	(C)				✓			✓
	MATH722	Advanced	(C)	√					✓	✓
		Mathematics								
Year	ENGL711	Technical Writing	(C)			✓				
2	ENGG711	Engineering Drawing	(C)	✓						
1st	MATH622	Discrete Mathematics	(C)	✓					✓	✓
Tri	IENF711	Data Structures &	(C)	√	√		√	√	√	
		Algorithm		*	*		, v	*	'	
	PHYS711	University Physics 2	(C)	✓				✓	√	✓
Year	IENF721	Principles of	(C)	✓	✓			✓	✓	

Doc. No.	QR-AAD-01			
Revision No.	02			
Date of Effectivity	01-09-24			

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 13 of 31

18.		RSIF C	URRICULU	M SKII	Ις ΜΔΙ	PPING				
10.			Core (C)				ne Learr	ning Out	comes	
Year/	Course	Course Title	or			_				
Year/ Level	Code	Course rittle	Option	SO1	SO2	SO3	SO4	SO5	SO6	SO7
Level 2			(E)							
		Communications	4->							
2nd	ENGG721	Electric Circuit Theory	(C)	✓	✓	✓		✓	✓	
Tri		1	4->							
	MATH731	Multivariate Calculus	(C)	✓					✓	✓
	IENF723	Introduction to Data	(C)	✓	✓			✓	✓	\checkmark
		Science	4->							
	IENF722	Database Systems	(C)	√	✓			√	√	√
	PHYS722	University Physics 3	(C)	√				√	√	✓
	ENGG731	Electronics 1	(C)	✓	✓	✓		√	√	
	ENGG734	Signals and Systems	(C)					✓	✓	
Year	ENGG732	Electric Circuit Theory	(C)	✓	✓	✓		✓	✓	\checkmark
2		2								
3rd	ENGG733	Engineering Economy	(C)	✓			✓			
Tri	MATH733	Linear Algebra	(C)	✓				✓	✓	✓
	MATH732	Numerical Methods	(C)	✓					✓	\checkmark
		and Analysis								
	ENGG813	Digital Logic Design	(C)	✓	✓	✓		✓	✓	✓
Year	IENF811	Computer Networks 1	(C)	✓	✓	✓	✓	✓		
3	ENGG812	Electronics 2	(C)	✓	✓	✓		✓	✓	✓
1st	IENF812	Artificial Intelligence	(C)	✓	✓			✓	✓	✓
Tri	ENGG811	Electromagnetics	(C)	✓						✓
	MATH821	Optimization Methods	(C)	✓						
	IENF821	Computer Networks 2	(C)	✓	✓	✓		✓	✓	
	IENF822	Advanced Digital Logic	(C)	✓	√			✓	✓	✓
Year		Design	(0)							
3	ENGG831	Engineering Project	(C)	✓			√	√		
2nd		Management								
Tri	ENGG821	Control Systems	(C)	✓	✓				✓	✓
	IENF823	Computer Organization and Architecture	(C)	✓	√	✓	√	✓	✓	✓
	IENIE024		(C)	√	√	√		√	√	√
	IENF824	Power Electronics	(C)	✓ ✓	✓ ✓	'		∨	∨	∨
Year	IENF831	Computer Networks 3	(C)	V	· ·		√	^	V	v
3	ENGG842	Safety Engineering	(C)				V			
3rd	IENF832	Operating Systems	(C)	✓	✓			✓	✓	✓

Doc. No.	QR-AAD-01			
Revision No.	02			
Date of Effectivity	01-09-24			

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 14 of 31

18.		BSIE C	URRICULU	M SKIL	LS MAF	PPING				
			Core (C)				ne Learr	ning Out	comes	
Year/	Course	Course Title	or		ı	ı	ı	ı	1	
Level	Code		Option (E)	SO1	SO2	SO3	SO4	SO5	SO6	SO7
Tri	IENF833	Machine Vision	(C)	✓	✓	✓		✓	✓	✓
	IENF834	Systems Analysis and Design	(C)	✓	✓			✓	✓	✓
	IENF835	Cloud Computing	(C)	✓	✓			✓	✓	✓
	IENF841	Digital Systems Design using HDL	(C)	✓	✓	✓			✓	✓
Year 4	IENF842	Wireless Communication Systems	(C)	✓	√	✓		✓	✓	√
1st	ENGG841	Technopreneurship	(C)			✓	✓	✓	✓	
Tri	IENF843	Enterprise Networking	(C)	✓	✓		✓	✓	✓	✓
	IENF844	Microcontroller and Embedded Systems	(C)	✓	✓	✓		✓	✓	✓
	ENGG851	Professional Ethics and Engineering Laws	(C)				✓			
	IENF856	Robot Kinematics, Dynamics and Control	(C)	✓	✓	✓		✓	✓	✓
	IENF852A	Cryptographic Systems	(E)	✓	✓			✓	✓	✓
	IENF852B	Network Security	(E)	✓	✓			✓	✓	✓
	IENF852C	Ethical Hacking	(E)	✓	✓			✓	✓	✓
	IENF853A	Microprocessor Systems	(E)	✓	✓			✓	✓	✓
	IENF853B	Data Mining	(E)	✓	✓			✓	✓	✓
Year 4	IENF853C	Parallel and Distributed Computing	(E)	√	✓			✓	✓	√
2nd Tri	IENF854A	Special Topics in Computer Engineering	(E)	√	✓			✓	✓	√
	IENF854B	Digital Control Systems	(E)	✓	✓			✓	√	✓
	IENF854C	Industrial Control Systems Design	(E)	√	√			√	✓	✓
	IENF851	Software Engineering	(C)	√	√			√	✓	✓
	IENF855	Informatics Engineering Design Project A	(C)	√	✓	✓	✓	√		✓

Doc. No.	QR-AAD-01			
Revision No.	02			
Date of Effectivity	01-09-24			

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 15 of 31

18.	BSIE CURRICULUM SKILLS MAPPING									
Year/	r/ Course o		Course Course Title Core (C) Programme Learning O					ning Out	Outcomes	
Level	Code	course ritie	Option (E)	SO1	SO2	SO3	SO4	SO5	SO6	SO7
Year	IENF861	Industrial Attachment	(C)	✓	✓	✓	✓	✓		✓
4	IENF862	Informatics	(C)							
3rd		Engineering Design		✓	✓	✓	✓	✓	✓	✓
Tri		Project B								

BACHELOROF SCIENCE IN INFORMATICSS ENGINEEING (BSIE)

CURRICULUM PLAN EFFECTIVE AY 2022-2023

COURSES DESCRIPTION

FOUNDATION COURSES

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PRE-REQUISITE(S)	
CODE		Hrs	Hrs	UNITS		
MATH500	Remedial Mathematics	3	0	0		

This course is a foundation in mathematics focusing on the building of the knowledge and skills and understanding to solve problems in college algebra and trigonometry. It deals with the topics on equations and Inequalities; functions and graphs; polynomial and rational Functions; exponential and logarithmic functions; trigonometric functions; trigonometric identities and equations; application of trigonometry; systems of equations and inequalities; and matrices. It also includes the application of the mathematical thinking process.

ENGL500	English Foundation Course	12	0	0
---------	---------------------------	----	---	---

ENGL500 is a required foundation course for entering students whose English language skills need further improvement and enhancement to be able to cope with the university's academic courses. This course introduces the students to the English language where they get involved and engaged in the learning process. It utilizes an integrated approach in developing the students' English macro communication skills in speaking, listening, grammar, and vocabulary in one phase (preintermediate) which will serve as the benchmark for the next level first year English course. Furthermore, the course intensifies its intended learning objectives with the comprehensive utilization of audio-lingual presentations, includes information related to dictionary use, basic grammar rules, daily use vocabulary words through a variety of contexts, written responses, writing structures, settings of writing, and the process of forming written and spoken communications. Hence, the students are expected to gain more knowledge to communicate effectively in English.

Doc. No.	QR-AAD-01			
Revision No.	02			
Date of Effectivity	01-09-24			

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 16 of 31

EIDCT VEAD

EUTH500

Euthenics

FIRST YEAR							
FIRST TRIMESTER		1					
COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)		
		Hrs	Hrs	Units			
ARAB600	Arabic Language	3	0	3			
	عليل و نقد وبيان خصائص النصوص المطلوبة التي ت						
للغة العربية مع مراعاة	لقواعد النحوية والأساليب الصرفية الأساسية في اا	وتطبيق ا	راسة وفهم	لمقرر على در	الأدبية نثرا وشعرا. كما يركز هذا اا		
				ة.	مهارات الكتابة الإملائية الصحيح		
The course focuse	s on the fundamentals of Arabic languag	ge, such a	as readin	ıg, analyzir	ng, and critique. It explains		
the characteristics	s of the required texts, which deal with d	ifferent	literary g	genres, pro	ose and poetry. The course		
also focuses on th	ne understanding and application of gra	mmatica	al rules a	and basic r	morphological methods in		
Arabic, taking into	account the correct spelling skills.						
CHEM611	General Chemistry	2	2	3			
This course demo	nstrates atomic theories, relationships b	etween	structur	e and prop	perties of matter, scientific		
notation, density	calculation, atomic structure and energ	y levels,	periodio	table, ior	s formation and chemical		
bonding, chemica	I reactions and emphasizing the chemic	al chang	e, balan	cing equat	ion, Discussion on gas law		
includes properti	es and application of gas laws, Acids a	and base	es, soluti	ion and cl	arification of acid — base		
concept.							
IENF611	Introduction to Computing	2	2	3			
This course cover	s a detailed knowledge and understand	ing of co	mputer	hardware	and software. It includes		
the discussion of r	number systems, networking and the int	ernet an	d the int	erdisciplir	nary science of computing.		
It also provides a	discussion of programme development	structu	res, algo	rithms an	d flowchart development.		
The laboratory de	livers practices in Microsoft 365 Apps, c	onfigurii	ng web b	rowsers s	ecurity, configuring E-mail		
security, configur	ing OS security.						
ENGL611	English Communication Skills 1	3	0	3			
This is an introdu	This is an introductory course in English communication designed to provide comprehensive, up-to-date and						
relevant instruct	ion in the correct use of grammar.	It inte	nds to	build up	students' confidence in		
communicating t	communicating their thoughts, ideas, information and messages through the functions and structures of						
different words, phrases, clauses, sentences and paragraphs. In addition, the integration of language skills							
increases their co	ommunicative competence and prepar	es them	n for the	academi	c and social challenges in		
college and beyor	nd.						

This course is designed to bring in the policies and procedures in the university, to guide the students in the performance of their respective role and to become adept on ideals needed in their academic pursuit. Thus, students are oriented on the history, vision, mission, values and objectives of the university, the services and academic support available, the academic and non-academic policies, the different misconduct and violations with corresponding penalties in which the learning objectives are better facilitated by various classroom discussion through collaborative teamwork learning experience.

1

Doc. No.	QR-AAD-01			
Revision No.	02			
Date of Effectivity	01-09-24			

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 17 of 31

MATH631	Calculus 1	5	0	5	

This course is intended to develop practical skills in differential calculus and analytic geometry. Emphasis is placed on functions, limits and continuity, fundamental concepts of analytic geometry, explicit and implicit differentiation of algebraic and transcendental functions, conics, higher derivatives, polar coordinates and its applications (equations of tangent and normal lines, sketching polynomial curves, maxima and minima problems and time rates.

TOTAL 17

SECOND TRIMESTER

COURSE CODE	COURSE TITLE	LEC Hrs	LAB Hrs	CREDIT Units	PREREQUISITE(S)
IENF621	Computer Programming	2	2	3	IENF611

This course covers detailed knowledge in problem solving and algorithm development, with emphases on developing good programming habits, and programming in a modern computer language. The course familiarizes the students with the features of object-oriented programming and its applications to solve the problems. It includes a discussion of an overview of the Java language syntax, including packages, classes, methods, variables, conditional statements, control flow and Arrays. The laboratory focuses on the implementation of the programming theories and concepts in Java programming language.

ENGL621	English Communication Skills 2	3	0	3	ENGL611
---------	--------------------------------	---	---	---	---------

This is an intermediate course in English communication geared towards equipping the college students with writing skills in preparation for academic writing. It progresses from familiarizing the sentence conventions to balancing the structures of the sentence for variation and rhythm. Further, it enables students to follow the principles that govern the composition writing in achieving unity, coherence, and emphasis; to improve their expository, descriptive, narrative, and argumentative works and to get hold of the discipline in academic writing for future advantages by providing them the opportunity in adhering the process of writing for effective communication.

يتناول مقرر HIST600 دراسة تاريخ مملكة البحرين ومنطقة الخليج العربي ويُظهر تعداد للاحداث الهامة في البحرين ومنطقة الخليج العربي وأثارها على الوضع الراهن ، ويغطي الأهمية الاستراتيجية والمكانية للبحرين للبحرين بدءا" من الحضارات القديمة و مرورا" ألى العهد الاسلاي، والاحتلال البرتغالي، وصراع القوى في القرن السابع عشر، وصعود قبيلة العتوب، والبحرين تحت الحماية البريطانية وابرام المعاهدات مع بريطانيا، وانسحاب القوات البريطانية من البحرين والخليج ، ويتناول وصف الاماكن والشخصيات والتطورات التاريخية والانجازات في البحرين في عهد حكام البحرين، والبعد العربي والاسلامي في تكوين هوية البحرين ، ألانضمام لمجلس التعاون الخليجي ، وتاريخ دول الخليج العربي (دول مجلس التعاون الخليجي)، ومع نهاية الكورس يكون الطالب قادر على تحليل الجذور التاريخية للبحرين لتكوين الهوية الوطنية ، والتمتع بمقدرة الاتصال الشفهي والكتابي والعمل بشكل منتج وفعال ضمن فريق واحد.

This Course includes the history of the Kingdom of Bahrain and the Arabian Gulf region. It includes the important events in Bahrain and the Arabian Gulf region and their impact on the current situation. It covers the strategic importance of Bahrain, starting with "Ancient civilizations and passing through" the Islamic era, Bahrain's entry into Islam, Portuguese occupation, competition of powers in the 17th century and the rise of a tribe of Al-Atub. It includes the history of Bahrain under the British protection and the conventions between Bahrain and Great Britain up to British troops leaving the region. It describes the places and persons as well as

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 18 of 31

the historical developments and achievement in Bahrain during the time of Al- Khalifah. It includes independence of Bahrain, issuing of the first constitutional law, reform project by His Majesty King Hamad, constitutional amendments, establishment of GCC, history of Arab Gulf states. It makes the student able to present his patriotic character through historical discussions.

MATH711 Calculus 2 5 0 5 MATH631

This course provides the students with knowledge and understanding of core concepts, theories and principles in evaluating definite and indefinite integrals and its applications in solving engineering and computing problems. The course also covers solutions to ordinary differential equations which can be used in modeling important applications in the scientific and engineering fields.

HUMR600 Human Rights 3 0 3

تناول هذا المقرر تمكين الطالب و جعله قادرا على معرفة الخلفية التاريخية لحقوق الإنسان، المفاهيم و الاصول الفلسفية و الرؤيا الاسلامية لحقوق الإنسان كما يتناول بالعرض و التحليل مصادر حقوق الإنسان كالإعلان العالمي لحقوق الإنسان، و العهد الدولي الخاص بالحقوق الإنسان المدنية و الشقافية و الوثائق الدولية الأخرى ذات الصلة بحقوق الإنسان المدنية و السياسية و العهد الدولي الخاص بالحقوق الإنسان الموطني و الميثاق الوطني و ما الحقوق و التمييز بينها. كما يتناول بالمقاربة ذاتها ما ورد في الوثائق الوطنية مثل دستور مملكة البحرين و الميثاق الوطني و كيمكن الطلبة من مهارات تحليل و تفسير ونقد التطبيقات و التجاوزات فضلا عن القدرة على التحليل و التواصل و عرض مسائل حقوق الإنسان بمختلف الوسائل.

This course makes the students able to know the background, main concepts of Human Rights and the philosophical thoughts and Islamic view which contribute in modern Human Rights. It makes them able to analyze what is mentioned in different kinds of Human Rights sources as Universal Declaration of Human Rights, International Covenant on Civil and Political Rights and International Covenant on Economic, Social and Cultural Rights. It deals in the same approach with the National Sources of Human Rights such as the Constitutional Law of Kingdom of Bahrain and National Action Charter with applications as well. The course makes the students able to analyze, discuss and debate Human Rights issues in different ways.

TOTAL 17

THIRD TRIMESTER

COURSE COD	E COURSE TITLE	LEC Hrs	LAB Hrs	CREDIT Units	PREREQUISITE(S)
IENF631	Advanced Programming	2	2	3	IENF621

This course covers object-oriented techniques using modern fourth generation language. Topics include inheritance, method overloading, overriding, polymorphism, packages, exception handling, multithreading, file operations and Event driven programming using swing components. The laboratory focuses on the implementation of programming theories and concepts in Java programming language.

ENGL631	Speech and Oral Communication	2	2	3	ENGL621
---------	-------------------------------	---	---	---	---------

This is a developmental course in English communication geared towards competent, efficient, and effective interpersonal speaking across communicative contexts. It refines oral communication skills through accurate articulation of segmental phonemes, pronunciation drills, and enunciation of the suprasegmental features of speech, specifically sentential stress, and intonation. Further, it incorporates the mechanics and techniques of speech craft and delivery with emphases on practical speaking experiences and analysis of audience psychology, which are deemed applicable in diverse speech situations.

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 19 of 31

SCIE631	Biology	2	2	3			
This course focus	es on the detailed knowledge and un	derstand	ding of t	the fundar	mental life processes and		
functions of livin	functions of living systems including the nature of knowledge relating to cell structure, function and						
metabolism, bioe	nergetics, genetics and biotechnology	, cellulai	r reproc	luction an	d cell division, evolution,		
biodiversity, and	ecology. The students will demonstrate	the imp	ortance	of explan	ations based on evidence		
through inquiry-b	ased laboratory activities to provide ins	ight into	scientif	ic method			
MATH621	Probability and Statistics	3	0	3			
This course provide	des a demonstration of the main conce	pts of p	robabilit	ty and stat	istics with applications. It		
also covers identi	fying the theorem of probability and li	inked wi	th real l	life proble	ms. How to differentiate		
between the com	bination and permutation, explain how	w to find	the me	ean and va	ariance from the moment		
generating function	on. Explain and interpret the findings f	rom diff	erent h	ypothesis	tests for decision making.		
Finally, SPSS will b	e used to run the statistical measures (e.g. hypo	othesis t	ests and r	egression model)		
PHYS631	University Physics 1	2	2	3	MATH631		
This course is des	igned to explore the concepts of motion	n using v	ectors a	and other	mathematical models and		
their advanced ap	pplication, such as the application of l	Newton'	s laws o	of motion,	projectile motion, work,		
energy, momentu	m and impulse, rotational dynamics, eq	լuilibriur	n of a ri	gid body, a	and periodic motion.		
ENVS711	Environmental Science	3	0	3			
This course is an	introduction to Environmental Science	focusing	g on inte	errelations	hips of the natural world,		
sustainable devel	opment with environmental, economic	c and so	cietal d	imensions	, energy transformations,		
ecological process and relationships, energy flow through systems, human population growth, water							
processes and cycles, impacts of climate change, "green" electronic processes, energy utilization and							
efficiency, conventional and alternative energy sources, present day agricultural practices, biodiversity and							
threats by human activity, and conservation issues.							
			TOTAL	18			

SECOND YEAR

FIRST TRIMESTER

system requirements.

COURSE CODE	COURSE TITLE	LEC	LAB CREDIT		PREREQUISITE(S)
		Hrs	Hrs	Units	
IENF711	Data Structures and Algorithm	2	2	3	IENF631
This course covers advanced problem solving in linear and non-linear data structures and their					
implementation. Topics include arrays, sorting and searching techniques, stacks, queues, linked lists, trees and					
hash tables. In addition, it covers various strategies for choosing appropriate structures according to the					

The laboratory portion covers the implementation of linear data structures such as stacks and queues and nonlinear data structures like trees and graphs using array and linked list.

ENGL711	Technical Writing	3	0	3	ENGL621
---------	-------------------	---	---	---	---------

This is an advanced course in English academic writing designed to deal with the application of the technical writing principles with the correspondence on business, science, and technology. It aims to develop the

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 20 of 31

technical writing skills and communication of the college students thru the discussions of its elements and ethics with the use of digital technologies. Furthermore, it enables students to adapt the various communication routes in the workplace, to conceptualize suitable contents of technical writing, to understand the characteristics and other methods of communication techniques, to plan and organize advanced level tasks and to work effectively and with accountability with other team members in a creative and productive manner, in any language learning scenario when achieving personal and group outcomes.

ENGG711	Engineering Drawing	2	2	3
---------	---------------------	---	---	---

This course deals with the application of Computer-Aided Drafting Design (CADD) in sketching and drawing to produce engineering drawings. The student will learn the appropriate AutoCAD drawing and modifying commands to generate 2D drawings and orthogonal projections of 3D drawings. The course will cover editing, modifying and plotting 2D and 3D drawings.

MATH722	Advanced Mathematics	3	0	3	MATH711
---------	----------------------	---	---	---	---------

This course deals with the study of complex numbers, series solutions of ordinary differential equations by power series, Bessel Function, Frobenius method. Basics of Fourier series, Fourier transform, Laplace and inverse Laplace Transforms. Using MATLAB or other mathematical software in order to solve mathematical problems.

MATH622	Discrete Mathematics	3	0	3	MATH631
---------	----------------------	---	---	---	---------

This course introduces fundamental concepts and techniques in set theory in preparation for its many applications in Informatics Engineering. Topics include logic, proofs, sets, relations, functions, graphs and trees. It simplifies and evaluates basic logic statements including compound statements, implications, inverses, converses, and contrapositives using truth tables and the properties of logic.

PHYS711	University Physics 2	2	2	3	PHYS631, MATH711
					MATH/II

This course is designed to explore the concepts of electricity and magnetism using the concepts of mechanics, vectors, and other mathematical models and their advanced application, such as application of Coulomb's law, Gauss's law, Ohm's law, Kirchhoff's laws, electric potential and potential difference, basic circuits, series and parallel circuits and combinations, magnetic field and flux, induced EMF and applications such as electric motors and basic AC electric generators.

TOTAL 18

SECOND TRIMESTER

COURSE CODE	COURSE TITLE	LEC Hrs	LAB Hrs	CREDIT Units	PREREQUISITE(S)
ENGG721	Electric Circuit Theory 1	2	2	3	PHYS711

The course deals with the study of core theories, principles and concepts for analysis of DC networks through the application of basic laws and network theorems. It covers the inter relationship between the parameters of DC circuits, critical analysis of complex circuits excited by DC voltages and current sources through basic circuit laws - KVL and KCL and structured methods and theorems like nodal analysis, Mesh analysis, superposition, Maximum power transfer& Millman's theorem.

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

BSIE P	ROGRAMME SPECIFICATI	ONS	4Y202	22-202	3 Page 21 of 31	
					,	
The course deals with the This course deals on review on signals and systems, Introduction to communications						
systems. Amplitude modulation techniques (AM-LC, DSBSC, SSB, VSB and FDM). Frequency modulation						
techniques (NB	FM, WBFM). Sampling, PCM, Pulse Mod	dulation	(PAM, P	CM, TDM). Introduction to digital	
communication	and digital modulations (MSK, FSK, PSK, e	etc).				
IENF722	Database Systems	2	2	3	IENF711	
This course pro	vides advanced core theories and pract	tical skills	in data	abases and	d database management	
	information technology applications.				-	
	Relational Model, Database Operations					
	malization. It exposes the student to			ncepts and	d techniques in database	
-	s well provides a foundation for research			Data Mani	inviotion Longues (DMI)	
	practices the Data Definition Language (D					
	ta Query Language(DQL) Commands, To			_		
	ns, Constraints, Joins, Group By Command	a, Subque	eries and	Database	e Objects using Oracle SQL	
Developer tool. IENF723	Introduction to Data Science	2	2	3	IENF711	
			_			
	zes several open-source tools to address l	_	_	_		
	ch. It covers concepts, and techniques no					
· ·	ng data collection, cleansing, mangling, a	_			• • •	
_	riptive modeling, data product creation,	machine	e learnin	g algorith	ms, evaluation, effective	
	and Data Visualization.	1 2			AAATU744	
MATH731	Multivariate Calculus	2	2	3	MATH711	
	part of the course in calculus focused on				•	
	demonstrate advanced knowledge and					
-	ulus of functions of several variables incl				•	
	liers, applications of partial differentiatio					
_	theorem. The course also includes labora	atory con	nponent	s that mal	ke use of MATLAB as tool	
	ems in Multivariate Calculus.	,	T			
PHYS722	University Physics 3	2	2	3	PHYS711	
This course is d	esigned to explore the concepts of heat	and the	rmodyna	amics, wa	ves and optics, relativity,	
molecular, atom	nic, and nuclear physics using the concep	ts of med	chanics,	electricity	and magnetism, vectors,	
and other mathematical models and their advanced application, such as the application of the laws of						
thermodynamics, light and electromagnetic waves, Einstein's special theory of relativity, Planck's Quantum						
theory, de Bro	glie's waves, Heisenberg's Uncertainty F	Principle,	Dirac's	electron t	theory, Hund's Rule, and	
atomic models f	atomic models from Thompson's to Quantum Mechanical, as well as nuclear models.					
			TOTAL	18		
					•	

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 22 of 31

THIRD TRIMESTER							
COURSE CODE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)		
		Hrs	Hrs	Units			
ENGG734	Signals and Systems	2	2	3	ENGG721		
This course cover	This course covers the study of the core topics, principles of signal and noise, modulation and demodulation.						
It also discusses the specialist theories and principles of application of signals in the field of amplitude							
modulation and frequency modulation covering modulation index, bandwidth, side frequencies, power							
distribution and	calculation, modulator circuits. Moreov	ver, spect	tral anal	ysis, band	width ,efficiency, various		
transforms and fi	ilters will also be covered.						
ENGG733	Engineering Economy	3	0	3	MATH621		
This course deal	s with the advanced study of the co	re theor	ies, prir	ciples and	concepts of economic		
environment, int	erest and money-time relationship, dep	reciation	, capital	financing,	comparing alternatives,		
replacement stu	dies, break-even analysis, benefit co	st ratio,	and be	nefit cost	difference. It presents		
mathematical te	chniques and practical advice for eva	aluating	decision	s in the o	design and operation of		
engineering syste	ems.						
ENGG731	Electronics 1	2	2	3	ENGG721		
This course discus	sses core theories, principles and concep	ts of sem	iconduc	tors, PN ju	nction diode, other types		
of diodes & bipo	lar junction transistor (BJT). It also re	lates to f	undame	ntal diode	circuit's application and		
design; rectifiers,	limiters, doublers, Zener diode charact	eristics a	nd applic	cations, an	d special purpose diodes.		
The course evalu	ates the operation of bipolar junction tr	ansistor	(BJT), an	d its chara	cteristic and parameters;		
BJT as amplifier a	and switch, DC analysis and different bia	ising met	hods.				
ENGG732	Electric Circuit Theory 2	2	2	3	ENGG721		
This course deals	with core theories, principles and conce	pts of the	e topics o	of sinusoid	al voltage and current on		
RLC circuits, vect	tor algebra and its application to AC ci	rcuit ana	lysis, sin	usoidal an	d non-sinusoidal single		
phase system, an	d three phase systems. It also covers rea	actance, i	mpedan	ce, resona	nce, power in AC circuits,		
power factor co	rrection and impedance network. Th	e course	e evalua	tes the tl	neorems which includes		
Kirchhoff's laws,	Mesh, Superposition, Nodal Analysis, Th	nevenin's	, Norton	, and Maxi	imum power transfer.		
MATH732	Numerical Methods and Analysis	2	2	3	MATH722		
This course demo	nstrates critical knowledge and underst	anding of	fspeciali	st theories	s, principles and concepts		
of the study of	f numerical approximations and erro	ors, num	erical s	olutions c	of non-linear equations,		
interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of							
accuracy of numerical differentiation and integration methods and solution of initial value problems using							
Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that							
make use of MAT	TLAB as tool in solving problems in Num	erical Ana	alysis.				
MATH733	Linear Algebra	2	2	3	MATH731		

MATH733 Linear Algebra 2 2 3 MATH731
This course use specialist level skills to relate to and adapt main and core theories and concepts in the study of matrices and determinants, and their applications in numerical solutions of systems of linear equations. It also includes important topics such as linear transformations, eigenvalues and eigenvectors, complex vectors and matrices and numerical linear algebra. In the laboratory, MATLAB is use as a mathematical software and solutions to a variety of mathematical problems are determined.

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 23 of 31

TOTA	18	
------	----	--

THIRD YEAR

FHIRD YEAR FIRST TRIMESTER						
COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)	
CODE		Hrs	Hrs	Units		
ENGG813	Digital Logic Design	2	2	3	ENGG731	
This course p	rovides critical knowledge and understandi	ng of desi	igning di	gital logic	circuits. It covers numbe	
systems and conversion, Boolean algebra, algebraic manipulation, applications of Boolean algebra, Karnaugh						
maps, multi-level gate circuits, multiplexers, decoders, comparators, latches and flip-flops, registers,						
counters an	d introduction to HDL. Through laboratory	y and in-d	course p	roject, th	e students will creatively	
implement o	complex applications of digital logic circuits.	•				
IENF811	Computer Networks 1	2	2	3	IENF721	
This course i	ntegrates the core theories, principles, co	ncepts, st	ructure	functions	and components of the	
Internet and	d computer networks. The OSI and TCP/IP	models	are use	d to exam	ine the services and the	
associated	protocols in each layer. The concepts an	d structu	re of IF	v4 addres	ssing and subnetting, its	
application,	operation and implementation to network	s are disc	cussed. ⁻	The labora	itory part makes use of a	
range of app	proaches including the Packet Tracer and GN	IS3 to allo	w stude	ents to imp	lement static routing and	
critically and	alyze network requirements, issues and/or p	oroblems.	These s	imulators	will allow the students to	
build netwo	rks, use appropriate devices and IP address	es, and po	erform c	onfigurati	ons.	
ENGG812	Electronics 2	2	2	3	ENGG731	
This is an adv	vanced course in electronics which deals wi	th conce	pt, analy	sis and de	sign of electronic circuits	
using linear	and integrated devices. In this course inc	lude AC a	and DC a	analysis, p	rinciples and concepts o	
frequency re	esponse of BJT amplifiers and further exter	nds the st	udy to m	nultistage	amplifier and various FET	
The other t	copics include study and critical analysis	of Opera	tional A	mplifier, i	ts application, Feedback	
topologies 8	k explore NE555 Timer and its applications.					
IENF812	Artificial Intelligence	2	2	3	IENF723	
This course	covers advanced theories and state-of-th	e-art tec	hniques	of artific	ial intelligence. Artificia	
intelligence	(AI) is a research field that studies how to re	ealize the	intellige	ent human	behaviors on computers	
The AI is to make a computer that can learn, plan, and solve problems autonomously. The topic includes						
building blocks and components of artificial intelligence, learning about concepts like algorithms, machine						
learning, an	d neural networks. The laboratory focuses	on traini	ng the s	tudents w	ith building models using	
various artif	icial intelligence algorithms.					
ENGG811	Electromagnetics	3	0	3	ENGG732	
This course of	covers core topics on electric and magnet	ic fields t	hat em	phasize fu	ndamental concepts and	

applications in electromagnetic. Topics include vector analysis, coulomb's law and electrical field intensity, electric flux density, gauss's law, magnetic flux, magnetic flux density, magnetic potential, time varying fields, concepts and applications of Maxwell equations, electromagnetic waves and propagation, plane waves and

3

0

3

MATH732

reflection, waveguides, and Antennas.

Optimization Methods

MATH821

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 24 of 31

The course takes a unified view of optimization and covers the main areas of application of core optimization algorithms. The topics include linear optimization, robust optimization, network flows, dynamic optimization and non-linear optimization.

and non-linear optimization.		
TOTAL	18	

SECOND TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF821	Computer Networks 2	2	2	3	IENF811

This course provides an in-depth and advanced discussion of routing technology. It integrates the core theories, concepts, functions and operations of a router including the principles and applications of routing protocols. Topics include router components and configuration; Unicast and Multicast routing protocols: RIPv1, RIPv2, EIGRP, OSPF and BGP; VLSM and IPv6. The students make use of a range of approaches including the Packet Tracer, GNS3 and the actual network devices in the laboratory in performing advanced and complex network configurations using the different routing protocols and in the critical analysis of network requirements, issues and/or problems.

IENF822	Advanced Digital Logic Design	2	2	3	ENGG813
---------	-------------------------------	---	---	---	---------

This course provides critical knowledge and understanding of analysis and design of synchronous and asynchronous sequential circuits based on core theories, principles and concepts of combinational circuit and Hardware Description Language(HDL) Topics covered include design of Decimal Adder, Binary multiplier, multiplexer ,Demultiplexer , encoder ,decoder , design of sequential circuits like registers and counters, HDL models for combinational and sequential circuits , combinational PLDs and introduction to FPGA .

IENF823	Computer Organization and Architecture	2	2	3	ENGG813

This course covers computer arithmetic, computer function, components and their interconnections. It also includes discussion on memory hierarchy and organization; I/O peripherals and interfacing; instruction sets based on 8086 microprocessor, addressing modes and access; processor structure and functions including interrupts, RISC and CISC. The laboratory uses Assembly Language Program software which is a microprocessor emulator with editor, assembler and debugger.

IENF824	Power Electronics	2	2	3	ENGG812

This course covers the power electronics semiconductor switches, Thyristor, Triac, GTO and advanced types of power transistor. Triggering devices: UJT, DIAC, and PUT. Types of power conversion: single phase and three phase uncontrolled and controlled rectifiers and their performance. AC voltage regulator, inverters single phase and three phase with PWM techniques.

ENGG821	Control Systems	2	2	3	ENGG734

The course deals with the study of the concepts of control systems. It covers also the discussion of the mechanical and electrical modeling using conventional differential equations, reduction rules applied to block-diagram of linear control systems and signal flow graph. Laplace and Inverse Laplace Transformations. Discussion of time-domain response of first and second order control systems, steady-state errors, Routh-

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 25 of 31

Hurwitz Criterion for stability, root locus method, frequency response (bode diagram and polar plot), Nyquist stability criterion, and compensatory design techniques. MATLAB is used for analyzing and simulating control systems.

ENGG831	Engineering and Project Management	3	0	3	ENGG733
---------	------------------------------------	---	---	---	---------

This course provides critical knowledge and understanding of project management and the essential tools needed to deliver successful projects on time and on budget from the standpoint of the manager, who must skillfully organize, plan, implement and control non-routine activities to achieve schedule, budget and performance activities. Topics include: project life cycles, principles and concepts of strategic management process in project selection and organization, planning, budgeting and scheduling systems. It also covers planning and control methods such as PERT- CPM, Gantt Charts, earned value techniques, project audits, and risk management to critically evaluate various project management situations.

TOTAL 18

THIRD TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF831	Computer Networks 3	2	2	3	IENF821

This course provides critical knowledge and understanding of the theoretical and practical approaches about technologies and protocols in the design and implementation of switched networks. Students learn about advanced and complex hierarchical network design model. The course tackles switch functionalities and implementations using VLAN, VTP, STP, Inter-VLAN, Link- Aggregation Protocol and WLAN. The laboratory sessions provide practical and actual approaches to learning advanced and complex switch configurations and troubleshooting using the different protocols mentioned.

IENF832	Operating System	2	2	3	IENF722
---------	------------------	---	---	---	---------

This course provides advanced and detailed information about the components and functionalities of operating systems. Topics include operating system structures, process management &scheduling, memory management, virtual memory management, deadlocks, file systems, directory structure, protection, security and distributed operating systems. In laboratory, the various operating system commands are illustrated using DOS, Cygwin tools and the implementation of scheduling, memory management and page replacement algorithms using Java.

IENF833	IENF812
IENF833	

This course discusses core theories, principles and concepts of machine vision devices and techniques and also learns about computer vision systems and digital image processing. It also relate to fundamental issues and techniques of computer vision and image processing. Emphasis will be on physical, mathematical, image-processing, pattern recognition, and feature extraction aspects of vision. The course will have a proper Lab activity to enable students to understand the breadth and depth of the lecturing materials. The main topics that will be as: Machine vision concepts, Image acquisition, Lighting, Image formation, Image conversion, Image processing and analysis. Image enhancement, Edge detection and Image segmentation.

	0 ,	·	0		0 0		
IENF834	Systems Analysis and	d Design	2	2	3	IENF722	

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 26 of 31

The course describes the concepts and methods used in the analysis and design of computer-based information systems. It includes discussions of typical computer systems life cycles, system requirements and specification, feasibility concerns, system design, fault tolerance, people and interface issues, compliance with ethical and legal standards and quality issues. The laboratory focuses on training the students with hands-on experience on using UML using various tools.

IENF835 Cloud Computing 2 2 3 IENF821

This course covers advanced concepts required to build a cloud infrastructure based on a cloud computing reference model. The reference model includes five fundamental layers, namely, physical, virtual, control, and service and three cross-layer functions, namely business continuity, security, and service management for building a Cloud infrastructure. Furthermore, Topics included Cloud infrastructure reference model, resource management, programming models, application models, system characterizations, and implementations, deployment of Cloud computing systems. Moreover, this course takes an open approach to describe concepts and technologies.

ENGG842 Safety Engineering 2 0 2 IENF824

This course deals with the detailed study of the principles of safety engineering and applications of safety principles to industrial and commercial systems. It covers topics concerning safety management, occupational health, fire prevention and control, electrical safety and environmental safety. Further, students will learn how to conduct risk analysis and some of the mitigation measures.

TOTAL 17

FOURTH YEAR

FIRST TRIMESTER

COURSE	COURSE TITLE	LEC Hrs	LAB Hrs	CREDIT Units	PREREQUISITE(S)
IENF841	Digital Systems Design using HDL	2	2	3	IENF822

This course covers topics in the advanced design and analysis of digital circuits with VHDL. The primary goal is to provide in depth understanding of logic and system design, synthesis, and optimization. The course enables students to apply their knowledge for the design of digital hardware systems with corresponding memory modules and reconfigurable programmable logic devices (PLDs and FPGAs). Verilog HDL will be used for simulation and synthesis of the lab exercises and final design project.

IENF842	Wireless Communication Systems	2	2	3	IENF821
ILINI OTZ	Wireless communication systems	_	_		ILIVIOZ

This course aims to develop the core knowledge of communications theories and their applications in digital communications. The course covers the structure of the digital communication systems, analog modulation technique, digital modulation techniques, probability of error in digital communication system, multiple access techniques, channels and source encoding, mobile communication systems.

ENGG841	Technopreneurship	3	0	3	ENGG831
---------	-------------------	---	---	---	---------

The course deals with the study of entrepreneurship in IT industry by applying the core theories and principles of entrepreneurship and management in IT business. The course covers types of entrepreneurship, legal factors related to the project like Business act, company act, technology act and Industrial act, developing a

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 27 of 31

Business plan	by integrating business proposal writing sk	kill, softv	vare skil	ls, innovat	tion and creativity skills. It
also covers ad	lvanced level topics like risk management, c	onfigura	ition mai	nagement	and quality management.
IENF843	Enterprise Networking	2	2	3	IENF821
This course pr	ovides critical knowledge and understanding	g of the	theoretic	cal and pra	actical approaches to WAN
technologies a	and network services required by converged	d applica	tions in o	complex e	nterprise networks. Topics
include Point	t-to-Point (PPP) concepts, Frame Relay, A	Access C	ontrol L	ists (ACL	s), Network Security and
Monitoring, V	PN technology, IP addressing services and	Quality	of Servic	e. The la	boratory sessions provide
practical and	actual approaches to learning advanced and	l comple	x implen	nentation	and configuration of WAN
technologies a	and protocols as mentioned.				
IENF844	Microcontroller and Embedded Systems	2	2	3	IENF823
This course	provides critical knowledge and underst	anding	of micr	ocontrolle	er-based systems design,
development	and implementation. It includes embed	dded sy	stem ty	pes, mic	rocontroller architecture,
programming	, digital and analog I/O interfacing, task s	schedulir	ng, inter	rupt and	timers management, and
communication	on interfaces. Through laboratory and in-co	urse pro	ject, the	students	will creatively implement
complex appli	ications of microcontroller-based systems.				
ENGG851	Professional Ethics and Engineering Laws	3	0	3	ENGG831
This course co	overs topics in the core theories and concep	ts of eth	ics, law,	contracts	, intellectual property, the
responsible e	ngineer, moral thinking, risk/safety/liabili	ty, emp	loyer res	sponsibilit	ies, product liability, and
environmenta	al responsibilities. The course deals with sev	eral cas	e studies	of ethica	I problems in engineering.
It discusses the core concepts of environmental protection and sustainability to understand how they relate					
to engineering ethics. The course is intended to promote greater reflection by engineers on their activities to					
better understand the social dimensions of engineering practice. It also provides a historical perspective on					
society's environmental concerns, and discusses environmental statutes, our regulatory system, approaches					
to preventing and mitigating environmental problems, and the elements of an effective environmental					
management	management system.				
			TOTAL	18	

SECOND TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF851	Software Engineering	2	2	3	IENF832

This course demonstrates the advanced concepts in software design paradigms; identify software requirements and use Computer Aided Software Engineering in designing and developing efficient software application. The course covers an in-depth survey of software process, project management, project metrics, project scheduling, risk management, software testing and software quality assurance. The course also covers the implementation of the proposed system using structured programming, software reviews, software testing techniques and strategies, software maintenance. The laboratory focuses on providing students with hands-on experience using different tools to design a mini project such as Microsoft Visio, Visual Studio and others.

IENF855	Informatics Engineering Design Project A	0	6	3	Completion of 162 Credit
					Units

Doc. No.	QR-AAD-01			
Revision No.	02			
Date of Effectivity	01-09-24			

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 28 of 31

This is the first of two courses in Informatics Engineering Design sequence which prepares students for engineering practice through a culminating major design experience or capstone based on the knowledge and skills acquired in foundation and core courses and incorporating appropriate engineering standards (IEEE, ISO) as an integral part and with due consideration of multiple realistic constraints tradeoffs. This is a group supervised design project in which students analyze, specify, design, construct, evaluate and adapt physical computing in various applications such as in smart environments and embedded systems. They also incorporate design standards and make decision as a result of multiple design tradeoff/constraints (economics, environmental, social, political, ethical, health and safety, manufacturability, and sustainability) analysis and evaluation as part of the design process.

IENF852	Major Elective 1 (Check below) / 3 Credit U	Inits			
IENF853	Major Elective 2 (Check below) / 3 Credit U	Inits			
IENF854	Major Elective 3 (Check below) / 3 Credit Units				
IENF856	Robot Kinematics, Dynamics and Control	2	2	3	ENGG821

This course facilitates the core learning and understanding of robot manipulators for students to understand complex design and applications of robots in industrial application. Successful completion allows students to formulate the kinematics and dynamic modelling of robotic manipulators consisting of a serial chain of rigid bodies and to implement control algorithms with sensory feedback during the lab sessions. Students will gain specialist skills in dealing with complex control architecture and manipulator structure typical to new-generation robots

TOTAL 18

THIRD TRIMESTER

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF861	Industrial Attachment	0	6	6	IENF844

This course is the practicum course where the students are exposed to actual work environment. The students are required to complete 240 hours of on-site training. They are sent to work environments under the supervision of a practicum professor. Moreover, at the end of the course, an individual student submits a final report and a performance evaluation made by the on-site supervisor.

IENF862	Informatics Engineering Design Project B	0	6	3	IENF855
---------	--	---	---	---	---------

This course is a continuation of Informatics Engineering Design A which enables students to design a system, component, or process to meet desired needs within realistic constraints through a culminating major design experience or capstone based on the knowledge and skills acquired in foundation and core courses and incorporating appropriate engineering standards (IEEE, ISO) as an integral part and with due consideration of multiple realistic constraints tradeoffs.

This is a group supervised design project in which students analyze, specify, design, construct, evaluate and adapt physical computing applications in smart environments and embedded systems. They also incorporate design standards and make decisions as a result of multiple design tradeoff/constraints (economics,

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 29 of 31

environmental, social, political, ethical, health and safety, manufacturability, and sustainability) analysis and evaluation as part of the design process.

evaluation as part of the design process.		
TOTAL	9	
Grand Total	204	

ELECTIVE COURSES

MAJOR ELECTIVE 1 (Student must choose 1 course)

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF852A	Cryptographic Systems	2	2	3	IENF821

This course emphasizes systematic authentication to follow the advancement of cryptographic techniques and security protocols. It exposes the various protocols and cryptographic functions to estimate the strength of security using advanced encryption/decryption algorithm. It also discusses security enhancement techniques such as symmetric and asymmetric encryption and key exchange management. In addition, it investigates the various complex security issues and develops a high-level security mechanism in contemporary networked computer systems. The laboratory portion implements the complex level conversion of plain text to cipher text using RSA algorithm, Diffie-Hellman-Key-Exchange algorithm and Stream Cipher Technique to embed security in Java. In addition, it identifies suitable cryptographic algorithms for a given problem to resolve security issues.

IENF852B	Network Security	2	2	3	IENF821

This course discusses the essentials and underlying of network security with emphasis on secure network administration principles. It includes compliance and operational security, threats and vulnerabilities, controls and protection methods, and encryption and authentication technologies in order to attain secured working environment. In laboratory part, Cisco networking simulation tools are used to simulate, configure and apply Cisco compatible authentication protocols on the simulated networks.

IENF852C	Ethical Hacking	2	2	3	IENF821
----------	-----------------	---	---	---	---------

This course is designed to provide concepts and practices of cybersecurity with expert coverage of essential topics required for entry-level cybersecurity certifications. It covers the four distinct challenges: securing the infrastructure, securing devices, securing local networks, and securing the perimeter and the concepts and practices to overcome these challenges. This course covers each challenge individually for greater depth of information, with real-world scenarios that show what vulnerabilities look like in everyday computing scenarios. It will explore the various means that an intruder has available to gain access to computer resources. We will investigate weaknesses by discussing the theoretical background behind, and whenever possible, actually performing the attack. We will then discuss methods to prevent/reduce the vulnerability.

Doc. No.	QR-AAD-01
Revision No.	02
Date of Effectivity	01-09-24

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 30 of 31

MAJOR ELECTIVE 2 (Student must choose 1 course)

COURSE CODE	COURSE TITLE	LEC Hrs	LAB Hrs	CREDIT Units	PREREQUISITE(S)
IENF853A	Microprocessor Systems	2	2	3	IENF832

This course demonstrates advanced knowledge and understanding of the functions Microprocessor architecture and organization, type of buffering techniques data representation, addressing modes and instruction sets. Memory, PPI, PIT and serial Interfacing with Address decoding, I/O mapping and subsystem, interrupts and other peripheral controller and Programming. practice of the design of a microprocessor system based on Intel 86xxx microprocessor.

IENF853B	Data Mining	2	2	3	IENF832
----------	-------------	---	---	---	---------

This course provides an in-depth study of the field of statistical analysis and data mining as it relates to real-world applications. The course explores how the advanced and complex data mining interdisciplinary field brings together techniques from databases, statistics, machine learning, and information retrieval. It covers the field of data mining and includes the topics data preprocessing, predictive modeling, model evaluation techniques, clustering, classification, and association analysis and anomaly detection. The Laboratory session discusses Weka and R data mining tools and using that perform preprocessing, classifications and clustering based on real word data sets.

3	IENF832
2	2 3

This course provides an overview of distributed and parallel systems, with special emphasis on cloud-based implementations. Topics include distributed systems and models, computer clusters for scalable parallel computing, virtual machines, cloud platform architecture, service-oriented architecture, grid computing, and peer-to-peer computing. The Laboratory exercises will be used to demonstrate various aspects of parallel and distributed computing using MS MPI

MAJOR ELECTIVE 3 (Student must choose 1 course)

COURSE	COURSE TITLE	LEC	LAB	CREDIT	PREREQUISITE(S)
CODE		Hrs	Hrs	Units	
IENF854A	Special Topics in Computer Engineering	2	2	3	ENGG821

This course provides applications of various trending topics in computing, theoretical advanced knowledge on current trends, issues, and development in the field of Information Technology to make aware of the changes in technologies, applications and systems. This course help students in research in latest topics, or implementation of software system using latest technologies or understand the research trends in research contributions.

IENF854B	Digital Control Systems	2	2	3	ENGG821
----------	-------------------------	---	---	---	---------

The course deals with core theories, principles and concepts of Digital Control Systems, z-plane Analysis, Sampling and Reconstruction, Open-Loop and closed-loop Discrete-Time Systems, Time-Response Characteristics, Stability Analysis of Discrete-Time Control Systems, Design of Discrete-Time Controllers, Pole-Placement and Observer Design, and Linear Quadratic Optimal Control. MATLAB is used for analyzing and simulating digital control systems.

Doc. No.	QR-AAD-01		
Revision No.	02		
Date of Effectivity	01-09-24		

BSIE PROGRAMME SPECIFICATIONS AY2022-2023

Page 31 of 31

IENF854C	Industrial Control Systems Design	2	2	3	ENGG821
The course deals with core concepts and theories of the hardware and software of Programmable logic					
controllers. This course also deals with programming, connecting, and testing Programmable Logic Controllers					
(PLCs) for control of complex industrial/commercial processes. It covers sensor interfacing, application of PLCs					
in some specific Industrial process, and utilization of a hand-held programmer in troubleshooting PLCs. Hands-					
on simulation is conducted for the students to understand the critical PLC implementation process in industry					
using advanced tools such as Festo PLC modules and CodeSys software.					