

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 1 of 26

1.	Teaching Institution	University of Technology Bahrain (UTB)			
2.	University Department	College of Engineering			
3.	Programme Title	Bachelor of Science in Mechatronics Engineering (BSME)			
4.	Title of Final Award	Bachelor of Science in Mechatronics Engineering (BSME)			
5.	Mode of Attendance	Full time			
6.	National Qualification	NQF Level 8			
	Framework Level and Credit	612 NQF Credits (204 ACS Credits)			
7.	Accreditation	ABET			
8.	Other external influences	Local External Influences/References			
		Ministry of Education (MOE), Higher Education Council (HEC)			
		Education and Training Quality Authority (BQA)			
		International External Influences/References			
		Accreditation Board for Engineering and Technology (ABET)			
9.	Date of production/revision	September 2023			
	of this specification				
10.	10. Aims of the Programme				

The Bachelor of Science in Mechatronics Engineering (BSME) is an engineering programme which combines mechanical, electronic, electrical, and computer engineering. It is an interdisciplinary scientific area focusing on the study and design of intelligent programmable systems from an engineering perspective and looks into the design, development and controlling of advanced hybrid systems.

Programme Educational Objectives

The objectives of BSME programme are to produce graduates who will be able to:

- 1. pursue careers in Mechatronics Engineering or related fields towards the improvement of engineering practice;
- 2. engage in lifelong learning toward completion of advanced/continuing education or other learning opportunities; and
- 3. demonstrate professional success through strengthened networks and/or positions of increasing social responsibility.

11. Learning Outcomes, Teaching, Learning and Assessment Methods

Upon successful completion of the programme, the student will be able to:

- 1. identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics;
- 2. apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors;
- 3. communicate effectively with a range of audiences;
- 4. recognise ethical and professional responsibilities in engineering situations and make informed

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 2 of 26

judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts;

- 5. function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
- 6. develop and conduct appropriate experimentation, analyse and interpret data, and use engineering judgment to draw conclusions; and
- 7. acquire and apply new knowledge as needed, using appropriate learning strategies.

Teaching and Learning Methods

- 1. Active and Engaged Learning. Students are required to attend the sessions regularly. Students learn by doing, making, writing, designing, creating, and solving. Active participation of the students during discussion is expected. Learning is an active process, and as such, students must engage with the course materials, i.e. reading the textbook and other assigned advanced readings.
- 2. Problem-based learning. After each topic, sample problems will be provided to students. Working in groups, students identify what they already know, what they need to know, and how and where to access new information that may lead to resolution of the problem.
- 3. Problem-based learning. After each topic, sample problems will be provided to students. Working in groups, students identify what they already know, what they need to know, and how and where to access new information that may lead to resolution of the problem.
- 4. Collaborative learning. Students will be divided into groups with at least three (3) members and each group will be provided with problems or projects that they will work on together to search for understanding, meaning, or solutions Each group is expected to work together in solving particular engineering problems, discuss the algorithm of the problems, and present the solution in class.
- 5. Discovery-based learning. During laboratory hours, students will be given experiments to work in groups where they can apply the theories and principles learned. This is an opportunity to have hands-on experience and maximize their learning through actual simulation.

Assessment Methods

Assessment is through a combination of written examinations (essays, class tests, homework) and assessed coursework (problem sets, laboratory exercises and machine problems).

University of
Technology
Bahrain ²¹

Doc. No.	QR-AAD-01		
Revision No.	01		
Date of Effectivity	01-09-23		

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 3 of 26

12. Programme Structure

BACHELOR OF SCIENCE IN MECHATRONICS ENGINEERING (BSME) CURRICULUM PLAN EFFECTIVE AY2022-2023

REMEDIAL CLASSES

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ENGL301	Speaking and Listening	9	0	0	
ENGL302	Grammar and Vocabulary	9	0	0	
MATH300	Remedial Mathematics	3	0	0	

FIRST YEAR

FIRST TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ARAB400	Arabic Language	3	0	3	
CHEM400	General Chemistry 1	2	2	3	
CENG411	Introduction to Computing	2	2	3	
ENGL401	English Communication Skills 1	3	0	3	
EUTH400	Euthenics 1	1	0	0	
MATH401	College Algebra	3	0	3	
MATH402	Plane and Spherical Trigonometry	3	0	3	
			TOTAL	18	

SECOND TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
CENG511	Computer Programming	2	2	3	CENG411
ENGL402	English Communication Skills 2	3	0	3	ENGL401
EUTH401	Euthenics 2	1	0	0	EUTH400
HIST400	History of Bahrain and GCC	3	0	3	
MATH406	Differential Calculus with Analytic Geometry	5	0	5	MATH401, MATH402
SOCI400	Sociology	3	0	3	
			TOTAL	17	

THIRD TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
CENG523	Advanced Programming	2	2	3	CENG511
ENGL403	Speech and Oral Communication	2	2	3	ENGL402
MATH501	Integral Calculus with Differential Equations	5	0	5	MATH406
PHYS501	University Physics 1	2	2	3	MATH406
SCIE400	Biology	2	2	3	
			TOTAL	17	

Doc. No.	QR-AAD-01		
Revision No.	01		
Date of Effectivity	01-09-23		

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 4 of 26

SECOND YEAR

FIRST TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ENVS400	Environmental Science	3	0	3	SCIE400
ENGL502	Technical Writing	3	0	3	ENGL402
ENGG410	Engineering Drawing	2	2	3	
ENGG520	Engineering Materials	3	0	3	CHEM400
MATH503	Discrete Mathematics	3	0	3	MATH401
PHYS502	University Physics 2	2	2	3	PHYS501,
					MATH501
		18			

SECOND TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ENGG531	Electric Circuit Theory 1	2	2	3	MATH501,
					PHYS502
ENGG532	Thermodynamics	3	0	3	PHYS501
HUMR400	Human Rights	3	0	3	SOCI400
MATH409	Probability and Statistics	3	0	3	MATH503
MATH502	Advanced Mathematics	3	0	3	MATH501
PHYS503	University Physics 3	2	2	3	PHYS502
			TOTAL	18	

THIRD TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ENGG521	Engineering Mechanics	3	0	3	PHYS501
ENGG522	Engineering Economy	3	0	3	MATH406
ENGG534	Electronics 1	2	2	3	ENGG531
ENGG611	Electric Circuit Theory 2	2	2	3	ENGG531
MATH504	Multivariate Calculus	2	2	3	MATH501
MATH505	Numerical Methods and Analysis	2	2	3	MATH502
			TOTAL	18	

THIRD YEAR

FIRST TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
CENG611	Data Communication &	2	2	3	CENG411
	Networking 1				
ENGG535	Fluid Mechanics	3	0	3	MATH406
ENGG613	Electronics 2	2	2	3	ENGG534
ENGG615	Electromagnetics and Electrical	3	0	3	ENGG611
	Machines				
ENGG627	Logic Circuit, Switching Theory and	3	2	4	ENGG534

Doc. No.QR-AAD-01Revision No.01Date of Effectivity01-09-23

College/Department: College of Engineering/ Mechatronics Engineering

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 5 of 26

	Programmable Logic Devices				
MATH506	Linear Algebra	2	2	3	MATH504
			TOTAL	19	

SECOND TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ENGG501	Safety Engineering	2	0	2	ENGG611
ENGG533	Strength of Materials	3	0	3	ENGG521
MECH610	Pneumatics and Electro-	2	2	3	ENGG535,
	Pneumatics				ENGG627
ENGG614	Control Systems	2	2	3	ENGG611
MECH631	Power Electronics	3	2	4	ENGG613
MECH633	Introduction to Fuzzy/Neural	3	2	4	ENGG627,
	System				MATH503
			TOTAL	19	

THIRD TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
MATH507	Optimization Methods	3	0	3	MATH505
MECH621	Linear Systems	2	2	3	ENGG614
MECH623	Hydraulics and Electrohydraulics	3	2	4	ENGG535,
					ENGG627
MECH624	Programmable Logic Controllers	3	2	4	MECH610
MECH641	Process Instrumentation and	3	2	4	ENGG532,
	Control				ENGG614
			TOTAL	18	

FOURTH YEAR

FIRST TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ENGG639	Professional Ethics and	3	0	3	ENGG501
	Engineering Laws	_	-	-	
MECH639	Microcontroller	2	2	3	ENGG627
MECH642	Machine Vision	3	2	4	MECH621
MECH643	Robot Kinematics, Dynamics and	3	2	4	MECH631,
	Control				MECH621
MECH644	Modular Production System	3	2	4	MECH624
			TOTAL	18	

Doc. No.	QR-AAD-01		
Revision No.	01		
Date of Effectivity	01-09-23		

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 6 of 26

SECOND TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
ENGG638	Engineering and Project	3	0	3	ENGG522
	Management				
MECH651	Industrial Attachment	0	6	6	MECH644
MECH652	Mechatronics Engineering Design	0	6	3	MECH641,
	Project A				MECH643
			TOTAL	12	

THIRD TRIMESTER

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
MECH645	Technopreneurship	3	0	3	ENGG638
MECH653	Major Elective 1	2	2	3	See list below
MECH661	Mechatronics Engineering Design	0	6	3	MECH652,
	Project B				ENGG638
MECH662	Major Elective 2	2	2	3	See list below
		12			
Grand Total			204		

ELECTIVE COURSES

MAJOR ELECT	VEI
Course Code	Course Title

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
MECH653A	Data Communication and Networking 2	2	2	3	CENG611
MECH653C	System Modeling and Simulation	2	2	3	ENGG614
MECH653D	Digital Control Systems	2	2	3	ENGG614

MAJOR ELECTIVE 2

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
MECH662A	Wireless Communications	2	2	3	CENG611
MECH662C	Digital Signal Processing	2	2	3	MECH639
MECH662D	Power Plant	2	2	3	ENGG532

13. Awards and Credits					
Degree/ Certificate Awarded	Bachelor's Degree				
Total Units for Degree	204				
Total Trimesters Completed	12				
14. Personal Development Planning					

1. Conduct in-house trainings and seminars related to electronics, AutoCAD, programmable logic controllers, CAD/CAM technology, microcontrollers, automation systems and robotics technology.

2. Send faculty members in local and international conferences, seminars and trainings related to their fields of specialization.

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 7 of 26

- 3. Support faculty members in their conduct of research projects aligned to the College's research thrusts and priorities.
- 4. Establish partnerships and linkages where research collaborations can be made.
- 5. Encourage publication of research outputs and dissemination of results through participation in international research conferences and fora.

15. Admission Criteria

Admission to UTB is open to all qualified applicants. Acceptance to the university depends on the following criteria:

A. For First Year Undergraduate Applicants

Acceptance to the University depends on the following admissions requirements:

- 1. Completely filled out an admission application form
- 2. Minimum secondary school scores 60% or its equivalent
- 3. UTB Placement Test (Oxford Online Placement Test (OOPT)) result
- 4. Submission of all required documents stated in the Admissions Policy

To be admitted to any undergraduate programme, the applicant must satisfy the minimum secondary school grades or its equivalent without the need to take the UTB placement test and remediation classes of English, and Math, as shown in the following table:

Subtest Con	nponent for		Programme						
Bahraini, KSA, Kuwait, Qatar, Yemen, Switzerland, USA, and Ecuador Qualification		Engineering Studies (BSIE, BSME, BSEnE)	Computing Studies (BSCS, BSIT)	Business (BSBI, BSAF)	International Business				
Mathematics	Science/ Technical/Ge neral Track	At least 70% or C	At least 70% or C	At least 70% or C	At least 60% or D				
	Commercial and Literature Tracks	At least 80% or B	At least 80% or B	At least 80% or B	At least 60% or D				
Science		60	60	60	N/A				
English		At least 80 or	At least 80 or	At least 80 or	At least 80 or				
		В	В	В	В				

Subtest Component for	Programme					
Other Qualification (Indian,	Engineering	6	Development			
Pakistan, and west Airican)	(BSIE,	Studies (BSCS,	(BSBI,	Internationa		
	BSME,	BSIT)	BSAF)	i Dusiliess		
	BSEnE)					

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 8 of 26

	Science/	At least 51 or	At least 51 or C1	At least 51	At least 41 or
	Technical/Ge	C1		or C1	C2
Mathematics	neral Track				
	Commercial	At least 71 or	At least 71 or B1	At least 71	At least 41 or
	and	B1		or B1	C2
	Literature				
	Tracks				
Science		60	60	60	N/A
English		At least 71 or	At least 71 or B1	At least 71	At least 71 or
		B1		or B1	B1

*This is applicable to Bahraini and similarly equivalent qualification.

a. Secondary Grade in English

A qualified applicant for all programmes whose secondary school grade in English is within 60-79%, needs to take the placement test in English (OOPT). If the OOPT test result is 55 or above, applicant will not take remediation course in English. However, if the result is lower than 55%, applicant will take remediation course in English.

b. TOEFL/IELTS

Qualified applicant who attains the score of at least 500 (173 CBT, 61 iBT) for TOEFL, or with a score of 5.5 for IELTS, is exempted to sit the required English placement test.

c. Secondary Grade in Math

A qualified applicant for Engineering programme who has a secondary grade score in Math of 60-79% for commercial track and 60-69% for scientific and technical tracks and lower than 60% for the International Business programme has to take the remediation course in Math.

Note: UTB can accept new students equivalent to 5% of the total enrollment where student applicant has a CGPA below 60% but not lower than 50% from Bahraini Schools; below 41% but not lower than 33% from Indian and Pakistan Schools; and for other non-Bahrain based Schools, it will be based on the passing mark of the school. The 5% is subject to strict evaluation by the dean and the applicant's score in the OOPT and the secondary school grades.

d. Secondary Grade in Science

A qualified applicant for Engineering (BSIE, BSME, BSEnE), Computing (BSCS, BSIT) or Business (BSBI, BASF) programme who has a secondary grade score in science of lower than 60% has to take tutorial class in general science before taking any university-level science course.

B. For Undergraduate Transfer Student Applicants

Application Requirements:

- 1. Completely filled out an admission application form
- 2. Official Transcript of Records (TOR) from the university previously attended. Rules and regulations of the HEC-Bahrain regarding the authentication of foreign certificates and private

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 9 of 26

school certificates are to be applied when necessary.

- 3. Course description of all completed courses for which transfer credit is sought (authenticated by the originating university)
- 4. Certificate of Transfer from the university previously attended stamped by MOE, if any.
- 5. Withdrawal Certificate stamped by MOE
- 6. Submission of all required documents stated in the admissions policy.
- 7. The applicant should have a good moral standing from the university from which he/she is transferring.

Admissions Requirements:

- a. For Bahrain and KSA qualifications, the applicant should have at least a secondary school average of 60%. For non-Bahrain secondary qualifications (Indian and Pakistan) the applicant should have at least 41% secondary school average; and for other non-Bahraini qualifications please refer to the table of cut-off.
- b. If the applicant has taken and passed courses in English and Mathematics in the previous university, the applicant will be exempted in taking the remedial courses in both English and Mathematics. The applicant may proceed to mainstream university courses and is eligible to apply for credit transfer.
- c. If the applicant has not taken any courses in English, he/she shall take the OOPT. If the results on the two parts of OOPT results is passed, he will proceed to university English courses, otherwise, he/she will enroll the remedial courses in English where he/she fails.
- d. If the applicant has not taken any course in Mathematics, the basis for evaluation whether remedial course in mathematics is required or not is the score in mathematics subjects in his/her last year in the secondary school certificate using the table presented earlier.

The transfer of course credits is accepted at UTB provided that courses applied for crediting are equivalent to the courses where credit will be transferred. Practicum (Internship) course is eligible for credit transfer with the same practicum (internship) course from other university or re-admitted student from UTB.

The University requires the undergraduate student to complete at least 50% of the required credit units/hours of a programme in residence at UTB. The maximum credit units/hours that are eligible for transfer credits should not exceed two-thirds (66%) of the required credit units/hours based on his/her original degree from another university.

16. CGPA Requirement for Graduation
The required CGPA for an undergraduate student to be eligible for graduation is 2.0 out of 4.

17. Key Resources of information about the programme

- 1. Included in the College Catalogue
- 2. Uploaded on the UTB website

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 10 of 26

18.	BSME CURRICULUM SKILLS MAPPING									
Year/	Course		c) or 1 (0)	Pro	gramm	e Learr	ning Ou	Itcome	s / Stud	lent
Level	Code	Course little	Core (0	utcom	es		
		Arabia Languaga		<u>\$01</u>	SO2	SO3	S04	SO5	SO6	SO7
		ArdDic Language	(C)				v			
				•				v	•	•
Voor	CENGI411	Computing	(C)	\checkmark					\checkmark	
1	ENGL/01	English Communication	(C)							
1st	LINGLADI	Skills 1	(0)			\checkmark				
Tri	EUTH400	Euthenics 1	(C)							
	MATH401	College Algebra	(C)	\checkmark						
	MATH402	Plane and Spherical	(C)							
		Trigonometry	(-)	\checkmark						
	CENG511	Computer Programming	(C)	\checkmark					\checkmark	
	ENGL402	English Communication	(C)							
		Skills 2				V				
Year	EUTH401	Euthenics 2	(C)							
1	HIST400	History of Bahrain and	(C)				./			
2nd		GCC					•			
Tri	MATH406	Differential Calculus	(C)							
		With Analytic		\checkmark						
·	5001400	Sociology	(C)							
	CENG523	Advanced Programming		\checkmark			•		\checkmark	
	ENGL403	Speech and Oral		•					•	
	LINGLAUS	Communication	(0)			\checkmark				
Year	MATH501	Integral Calculus with	(C)							
1 2d		Differential	(0)	\checkmark						
3ra Tui		Equations								
111	PHYS501	University Physics 1	(C)	\checkmark				\checkmark	\checkmark	
	SCIE400	Biology	(C)	\checkmark				\checkmark	\checkmark	
	ENVS400	Environmental Science	(C)				√			✓
Year	ENGL502	Technical Writing	(C)			\checkmark				
2	ENGG410	Engineering Drawing	(C)	 ✓ 						
1st	ENGG520	Engineering Materials	(C)	✓			\checkmark			
Tri	MATH503	Discrete Mathematics	(C)	 ✓ ✓ 						
	PHYS502	University Physics 2	(C)	 ✓ 				√	√	✓
Year	CENG523	Advanced Programming	(C)	 ✓ ✓ 					√	
2	ENGG531	Electric Circuit Theory 1	(C)	 ✓ ✓ 	\checkmark	\checkmark		\checkmark	\checkmark	
2nd	ENGG532	Thermodynamics	(C)	 ✓ 						\checkmark
Tri	HUMR400	Human Rights	(C)				\checkmark			
	MATH409	Probability and Statistics	(C)	\checkmark						

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 11 of 26

18.	BSME CURRICULUM SKILLS MAPPING									
Year/	Course	Course Title	(C) or on (O)	Pro	gramm	e Learr O	ning Ou	tcome	s / Stud	lent
Level	Code		Core Optic	SO1	502	503	SO4	505	SO6	507
	MATH502	Advanced Mathematics	(C)	√					√	<u>√</u>
	PHYS503	University Physics 3	(C)	\checkmark				\checkmark	\checkmark	\checkmark
	ENGG521	Engineering Mechanics	(C)	\checkmark						
	ENGG522	Engineering Economy	(C)	\checkmark			\checkmark			
Year	ENGG534	Electronics 1	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
2	ENGG611	Electric Circuit Theory 2	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
3rd Tri	MATH504	Multivariate Calculus	(C)	\checkmark					\checkmark	\checkmark
Tri	MATH505	Numerical Methods and Analysis	(C)	\checkmark					\checkmark	\checkmark
	CENG611	Data Communication & Networking 1	(C)	\checkmark				\checkmark	\checkmark	\checkmark
	ENGG535	Fluid Mechanics	(C)	\checkmark						\checkmark
Voar	ENGG613	Electronics 2	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
3	ENGG615	Electromagnetics and Electrical Machines	(C)	\checkmark						\checkmark
Tri	ENGG627	Logic Circuit, Switching Theory and Programmable Logic Devices	(C)	\checkmark	~	~		~	~	\checkmark
	MATH506	Linear Algebra	(C)	\checkmark				\checkmark	\checkmark	\checkmark
	ENGG501	Safety Engineering	(C)				\checkmark			
	ENGG533	Strength of Materials	(C)	\checkmark						
Year 3	MECH610	Pneumatics and Electro- Pneumatics	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
2nd	ENGG614	Control Systems	(C)	\checkmark	\checkmark				\checkmark	\checkmark
Tri	MECH631	Power Electronics	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
	MECH633	duction to Fuzzy/Neural System	(C)	\checkmark	~	~		\checkmark	\checkmark	\checkmark
	MATH507	Optimization Methods	(C)	\checkmark						
	MECH621	Linear Systems	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Year 3	MECH623	Hydraulics and Electrohydraulic	(C)	\checkmark	~	~		\checkmark	\checkmark	\checkmark
3rd Tri	MECH624	Programmable Logic Controllers	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
	MECH641	Process Instrumentation and Control	(C)	V	\checkmark	~		\checkmark	\checkmark	\checkmark
Year	ENGG639	Professional Ethics, Laws and Contracts	(C)				\checkmark			
4	MECH639	Microcontroller		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
151	MECH642	Machine Vision	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 12 of 26

18.	BSME CURRICULUM SKILLS MAPPING									
Year/	Course	Course Title	rre (C) or otion (O)	Pro	gramm	e Learr O	ning Ou utcom	itcome: es	s / Stud	lent
	couc		ů õ	SO1	SO2	SO3	SO4	SO5	SO6	SO7
Tri	MECH643	Robot Kinematics, Dynamics and Control	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
	MECH644	Modular Production System	(C)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Year	ENGG638	Engineering and Project Management	(C)	\checkmark			\checkmark	\checkmark		
4	MECH651	Industrial Attachment	(C)	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark
2nd Tri	MECH652	Mechatronics Engineering Design Project A	(C)	~	~	~	~	~	~	\checkmark
	MECH645	Technopreneurship	(C)			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	MECH653A	Major Elective 1: Data Communication and Networking 2	(0)	~	~			~	~	~
	MECH653D	Major Elective 1: Digital Control Systems	(O)	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Year 4	MECH653C	Major Elective 1: System Modeling and Simulation	(O)	~	~	~			~	\checkmark
3rd Tri	MECH661	Mechatronics Engineering Design Project B	(C)	~	~	~	~	~	~	\checkmark
	MECH662A	Major Elective 2: Wireless Communications	(0)	~	~	~		~	~	\checkmark
	MECH662D	Major Elective 2: Power Plant	(0)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	MECH662C	Major Elective 2: Digital Signal Processing	(O)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark

University of
Technology
Bahrain

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 13 of 26

BACHELOROF SCIENCE IN MECHATRONICS ENGINEEING (BSME)

CURRICULUM PLAN EFFECTIVE AY2022-2023

COURSES DESCRIPTION

Course Code	Course Title	Lec Hrs	Lab Hrs	Credit Units	Pre-Requisites
MATH300	REMEDIAL MATHEMATICS	3	0	0	
This course is a foundation in mathematics focusing on the building of the knowledge and skills and					
understanding to solve problems. It deals with the topics on four general operations relating to whole					
numbers and money, fractions and decimals, location, time and temperature, percent linked with					
fraction and de	cimal, rates and ratios, statistics and	probabilit	y, and intr	oduction to alg	ebra. It also
includes the ap	plication of the mathematical thinkin	g process.			
		[1		
ENGL301	SPEAKING AND LISTENING	9	0	0	
ENGL301 is a re	equired remedial course for entering	students v	vhose Engl	ish language sk	cills need further
improvement a	and enhancement to be able to cope	with the u	niversity's	academic cour	ses. It utilizes an
integrated app	roach in developing the students' Eng	glish macro	o skills with	n emphasis on s	speaking and
listening. Furth	er, this course introduces the student	ts to Englis	sh languag	e arts where th	ley get involved
and engaged in	three phases (beginner, intermediat	e and adva	anced). It i	ntensifies its co	ourse intended
learning object	ives with the utilization of audio-lingu	ual presen	tations wh	ere the studen	ts are expected to
gain more know	wledge to communicate effectively in	English.			
ENCL202		0	0	0	<u> </u>
ENGL302	GRAIVINAR AND VOCABULARY	9			ille and for the sec
ENGL302 is a re	equired remedial course for entering	students v	vnose Engl	isn language sk	allis need further
improvement a	reach in developing the students' skill	with the u	mor and w	academic cour	ses. It utilizes an
(hoginnor into	rmodiate and advanced). In addition	it includor	indi dilu vo	on rolated to d	ictionary uso
beginner, inte	rules and daily use vocabulary words	through	variety of	contexts writt	ten responses
idioms writing	structures settings of writing and the	e nrocess	of forming	written comm	unication where
the students a	e expected to gain more knowledge t	to commu	nicate effe	ctively in Englis	sh
the students a		lo commu		cervery in Englis	,,,,,
ARAB400	ARABIC LANGUAGE	3	0	3	
ARAB4يركز مقرر	ئص النصوص المطلوبة التي تتناول مختلف 00	د وبيان خصا	وتحليل و نقد	للغة العربية كقراءة	على دراسة أساسيات ا
في اللغة العربية مع	للقواعد النحوية والأساليب الصرفية الأساسية	وفهم وتطبيق	ر على دراسة	كما يركز هذا المقر	الأجناس الأدبية نثرا وشعرا.
لإملائية الصحيحة.	مراعاة مهارات الكتابة ال		-		
CHEM400	GENERAL CHEMISTRY 1	2	2	3	
This course de	monstrates atomic theories, relations	hips betw	een struct	ure and proper	ties of matter,
scientific notat	ion, density calculation, atomic struct	ture and e	nergy leve	ls, periodic tab	le, ions formation
and chemical b	oonding, chemical reactions and emph	nasizing th	e chemica	l change, balan	cing equation,
Discussion on §	gas law includes properties and applic	ation of g	as laws, Ao	ids and bases,	solution and
clarification of	acid – base concept.				

University of
Technology
Bahrain ⁷

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 14 of 26

CENG411	INTRODUCTION TO COMPUTING	2	2	3	
This course cove	rs the basic concepts of computer hardw	are and	softwar	e. It includ	es the discussion of
microcomputer systems and workstations, networking and the internet and the interdisciplinary science of					
computing. It als	o provides a discussion of problem solvir	ng and a	lgorithm	developm	nent. Laboratory
sessions focus or	n the use of word processing, spreadshee	ts and p	resentat	tions using	g Microsoft Office
applications.					
	r				
ENGL401	ENGLISH COMMUNICATIONS SKILLS 1	3	0	3	
This is an introdu	actory course in English communication c	lesigned	to prov	de compr	ehensive, up-to-date
and relevant inst	ruction in the correct use of grammar. It	intends	to build	up studer	nts' confidence in
communicating t	heir thoughts, ideas, information and me	essages	through	the functi	ons and structures of
different words,	phrases, clauses and sentences. In addit	ion, the	e integra	tion of lan	guage skills increases
their communica	itive competence and prepares them for	the aca	demic a	nd social c	hallenges in college and
beyond.					
EUTH400	EUTHENICS 1	1	0	0	
This course focus	ses on the discussion of the policies and p	orocedu	res that	are intend	ed to guide each
member of the L	JTB community in the performance of his	her rol	e. This is	used as a	resourceful tool that
orients the stude	ents with academic and non-academic po	licies of	UTB. It o	contains th	ne history, vision /
mission and obje	ectives of the institution, the services and	academ	nic suppo	ort availab	le.
MATH 401	COLLEGE ALGEBRA	3	0	3	
This course is de	signed to familiarize learners with the ma	ain theo	ries, prir	ciples and	concepts of college
algebra that are	useful in analysis and simplification of ba	sic and s	some ad	vanced ma	athematical problems.
Content includes	functions which are polynomial, rationa	l, expon	ential, lo	garithmic	and related equations.
Sketching graphs	s, Matrices, determinants, progressions a	nd ineq	ualities a	s applied	to engineering.
MATH402	PLANE AND SPHERICAL	3	0	3	
	TRIGONOMETRY				
This course is de	signed to familiarize learners with main t	heories.	princip	es and cor	ncepts of plane and
spherical trigono	metry that are useful in analysis and sim	plificatio	on of sor	ne advanc	ed mathematical
problems. The co	ourse covers topics on angles and their m	easuren	nent. tri	zonometri	c/circular functions.
inverse trigonom	netric functions, identities, graphs of trigo	nometr	ic functi	ons. soluti	ons of trigonometric
equations, soluti	ons of right and oblique plane triangles.	introduc	tion to s	pherical t	rigonometry and its
applications.					
approactioner					
CENG511	COMPUTER PROGRAMMING	2	2	3	
This course cove	rs problem solving and algorithm develop	nment v	which en	nnhases o	n developing good
nrogramming ha	hits. It includes discussion of an overview	of the	lava lang	ninge svnt	ax including classes
methods variah	les conditional statements and control f		a lahorat	ory focuse	as on the
implementation	of the programming theories and concer	ts using	r lava		
		, to using	Juva.		
ENGL402	ENGLISH COMMUNICATIONS SKILLS 2	ર	0	ર	
This is an interm	ediate course in English communication of	peared +	owards	equinning	the college students
inis is an interm	enate course in English communication §	seareu t	owarus	equipping	s the conege students

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 15 of 26

with writing skills in preparation for academic writing. It progresses from familiarizing the sentence conventions to balancing the structures of the sentence for variation and rhythm. Further, it enables students to follow the principles that govern the composition writing in achieving unity, coherence and emphasis; to improve their expository, descriptive, narrative and argumentative works and to get hold of the discipline in academic writing for future advantages by providing them the opportunity in adhering the process of writing for effective communication.

EUTH401			EUT	HEN	IICS 2		1	0	0		
	-										

The course introduces the students to the guidelines on disciplinary actions as regards violations of the rules and regulations of the University. The students will be taught the general concepts and principles on values formation, attitudes and personality development. This course will encourage the students to participate in classroom discussion for them to better understand and appreciate acceptable social norms and the conduct of an educated individual.

HIST400	HISTORY OF BAHRAIN AND GCC	3	0	3	
)HIST4يتناول مقرر	داد للاحداث الهامة في البحرين ومنطقة الخليج 00	ويُظهر تعا	يج العربي	يمنطقة الخلب	دراسة تاريخ مملكة البحرين و

بدءا" من الحضارات القديمة و مرورا" ألى العربي وأثارها على الوضع الراهن ، و يغطي الأهمية الاستراتيجية والمكانية للبحرين للبحرين العهد الاسلامي، والاحتلال البرتغالي، وصراع القوى في القرن السابع عشر، وصعود قبيلة العتوب، والبحرين تحت الحماية البريطانية وابرام ، ويتناول وصف الاماكن والشخصيات والتطورات التاريخية المعاهدات مع بريطانيا، وانسحاب القوات البريطانية من البحرين والخليج والانجازات في البحرين في عهد حكام البحرين، والبعد العربي والاسلامي في تكوين هوية البحرين ، ألانضمام لمجلس التعاون الخليجي ، وتاريخ دول الخليج العربي (دول مجلس التعاون الخليجي)، ومع نهاية الكورس يكون الطالب قادر على تحليل الجذور التاريخية للبحرين لتكوين هوية والحديم والعمل الجذور التاريخية والمعادي والاسلامي و تكوين هوية البحرين ، ألانضمام لمجلس التعاون الخليجي ،

This course includes the history of the Kingdom of Bahrain and the Arabian Gulf region. It includes the important events in Bahrain and the Arabian Gulf region and their impact on the current situation. It covers the strategic importance of Bahrain, starting with "Ancient civilizations and passing through" the Islamic era, Bahrain's entry into Islam, Portuguese occupation, competition of powers in the 17th century and the rise of a tribe of Al-Atub. It includes the history of Bahrain under the British protection and the conventions between Bahrain and Great Britain up to British troops leaving the region. It describes the places and persons as well as the historical developments and achievement in Bahrain during the time of Al-Khalifa. It includes independence of Bahrain, issuing of the first constitutional law, reform project by His Majesty King Hamad, constitutional amendments, establishment of GCC, and history of Arab Gulf states. It makes the student able to present his patriotic character through historical discussions.

MATH406	DIFFERENTIAL CALCULUS WITH	5	0	5		
	ANALYTIC GEOMETRY					
This course is int	This course is intended to develop practical skills in differential calculus and analytic geometry. Emphasis is					
differentiation of	f algebraic and transcendental functions,	conics,	higher d	erivatives	, polar coordinates and	
its applications (equations of tangent and normal lines, sk	etching	polynor	nial curves	s, maxima and minima	
problems and tir	problems and time rates.					
		_	-	-		
SOCI400	SOCIOLOGY	3	0	3		
This course is designed to expose students to a detailed approach to studying society. It intends to give						
emphasis on the sociological perspectives, relationships with other social sciences, the main figures in						

emphasis on the sociological perspectives, relationships with other social sciences, the main figures in sociological development, including introduction to culture, transformation of societies, importance of

University of
Technology
Bahrain

Doc. No.	QR-AAD-01
Revision No.	01
Date of Effectivity	01-09-23

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 16 of 26

socialization, social groups, deviance and social control. Further, it integrates the discussions on social institutions that enable the college students to understand the economic perspective from ancient to					
present, the evolution of education and the current viewpoint of family.					
CENG523	ADVANCED PROGRAMMING	2	2	3	
This course enab	les students to understand and develop	Java app	lication	s. Topics ir	nclude arrays, recursion,
exception handli	ng, inheritance and polymorphism, file h	andling,	basic ap	oplets, stri	ngs, GUI and Java
events. The labo	ratory focuses on the development of pro	ograms	in Java. I	t starts fro	om the concepts of
arrays and progr	esses from exception handling to Basic A	pplets.			
ENGL403	SPEECH AND ORAL COMMUNICATION	2	2	3	
This is a develop	mental course in English communication	geared	towards	competer	nt, efficient and effective
interpersonal spe	eaking across communicative contexts. It	refines	the oral	communi	cation skills of the
college students	through accurate articulation of segmen	tal phor	nemes, p	ronunciat	ion drills and
enunciation of th	ie suprasegmental features of speech, sp	ecificall	y senter	itial stress	and intonation. Further,
it incorporates th	ie mechanics and techniques of speech c	raft and	deliver	y with emp	ohasis on practical
speaking experie	nces and analysis of audience psychology	y, which	are dee	med appli	cable in diverse speech
situations.					
MATH501	INTEGRAL CALCULUS WITH	5	0	5	
	DIFFERENTIAL EQUATIONS				
This course prov	ides the students with knowledge and un	derstan	ding of o	core conce	epts, theories and
principles in eval	uating definite and indefinite integrals an	nd their	applicat	ions in sol	ving engineering and
computing probl	ems. The course also covers solutions to	ordinar	y differe	ntial equa	tions which can be used
in modeling impo	ortant applications in the scientific and en	ngineeri	ng fields	5.	
PHYS501	UNIVERSITY PHYSICS 1	2	2	3	
This course is de	signed to explore the concepts of motior	ı using v	ectors a	nd other n	nathematical models
and their advanc	ed application, such as the application of	f Newto	n's laws	of motion	, projectile motion,
work, energy, mo	omentum and impulse, rotational dynam	ics, equ	ilibrium	of a rigid k	oody, and periodic
motion.					
		1			1
SCIE400	BIOLOGY	2	2	3	
This course focuses on the detailed knowledge and understanding of the fundamental life processes and					
functions of livin	g systems including the nature of knowle	edge rela	ating to o	cell structu	ure, function and
metabolism, bioenergetics, genetics and biotechnology, cellular reproduction and cell division, evolution,					
biodiversity, and ecology. The students will demonstrate the importance of explanations based on evidence					
through inquiry-based laboratory activities to provide insight into scientific methods.					
ENVS400	ENVIRONMENTAL SCIENCE	3	0	3	
This course is an	introduction to environmental science.	t examir	nes the e	cological	foundation of
environmental systems; the ecological impacts of population growth and environmental degradation by					
humans and the strategies for sustainable management of environment and natural resources; mineral					
resource extract	ion; water resource use and water pollut	ion; air j	pollutior	n and clima	ate change; and the
conventional and sustainable energy supply.					

University of
Technology
Bahrain

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 17 of 26

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 18 of 26

University of
Technology
Bahrain

Γ

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 19 of 26

٦

ENGGS21 ENSINEERING MECHANICS 3 0 3 This course deals with the core theories, principles and concepts of forces systems, force components, free body diagrams, vectors, resultant of force systems, moment of forces, and equilibrium of rigid bodies. It also includes critical analysis of structures, methods of analysis of strusses, and, distributed forces centroids and center of gravity, and the theory and application of friction. ENGGS22 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristic; amplifer types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTROIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and lise application to AC circuit analysis, sinusoidal and non-sinusoidal single phase systems. It also covers reactance, impedance, resonance, power in AC circuits							
This course deals with the core theories, principles and concepts of force systems, force components, free body diagrams, vectors, resultant of force systems, moment of forces, and equilibrium of rigid bodies. It also includes critical analysis of structures, methods of analysis of trusses, and, distributed forces centroids and center of gravity, and the theory and application of friction. ENGG522 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCUL	ENGG521	ENGINEERING MECHANICS	3	0	3		
body diagrams, vectors, resultant of force systems, moment of forces, and equilibrium of rigid bodies. It also includes critical analysis of structures, methods of analysis of trusses, and, distributed forces centroids and center of gravity, and the theory and application of friction. ENGG522 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTROIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non-sinusoidal single phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. <td>This course deals</td> <td>s with the core theories, principles and co</td> <td>oncepts</td> <td>of force</td> <td>systems, f</td> <td>force components, free</td>	This course deals	s with the core theories, principles and co	oncepts	of force	systems, f	force components, free	
also includes critical analysis of structures, methods of analysis of trusses, and, distributed forces centroids and center of gravity, and the theory and application of friction. ENGG522 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BIT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of fit copies of sinusoidal voltage and current on RLC circuits, vector algebra and its application to Ac circuit analysis, sinusoidal and non - sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics assoc	body diagrams, v	vectors, resultant of force systems, mom	ent of fo	rces. an	d equilibri	um of rigid bodies. It	
and center of gravity, and the theory and application of friction. ENGG522 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with nore theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, sector algebra and its application to AC circuit analysis, Sinusoidal and non- sinusoidal single phase system, and three phase asystems. It also covers valuating and calculus. Topics associated with the course in calculus focused on vector and multi-variable calculus. Topics associated with the course in calculus focused	also includes crit	ical analysis of structures methods of ar	alvsis of	f truccoc	and dist	ributed forces centroids	
and center of gravity, and the theory and application of inicide. ENGG522 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BIT), characteristic, amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non - sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course ealuates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 <td>and contor of ar</td> <td>with and the theory and application of f</td> <td></td> <td>1103553</td> <td>, anu, uist</td> <td>induced forces certifolds</td>	and contor of ar	with and the theory and application of f		1103553	, anu, uist	induced forces certifolds	
ENGG522 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristic: anglifter types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced kn	and center of gra	avity, and the theory and application of h	nction.				
ENGG622 ENGINEERING ECONOMY 3 0 3 This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuit analysis, emplication to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vecto							
This course deals with the advanced study of the core theories, principles and concepts of economic environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristic; and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors a	ENGG522	ENGINEERING ECONOMY	3	0	3		
environment, interest and money-time relationship, depreciation, capital financing, comparing alternatives, replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 2 3 This course deals with core theories, principles of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non-sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 MATH505 NUMERICAL METHODS AND 2 3 This course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical differentiation and metrical differentiation and integration. The course also incl	This course deals	s with the advanced study of the core the	eories, p	rinciples	and conc	epts of economic	
replacement studies, break-even analysis, benefit cost ratio, and benefit cost difference. It presents mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristic; an applifer types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of partial differentiation, line integrals, Green's theorem, stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHOD	environment, int	erest and money-time relationship, dep	reciatior	, capital	financing	, comparing alternatives,	
mathematical techniques and practical advice for evaluating decisions in the design and operation of engineering systems. ENGG534 ELECTRONICS 1 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristic; anplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non-sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of partial differentiation, line integrals, Green's theorem, Stok's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 2 3 This co	replacement stu	dies. break-even analysis. benefit cost ra	tio. and	benefit (cost differ	ence. It presents	
Indication of the process of process of the conservation of the design of the design of diode circuits, ENG6534 ELECTRONICS 1 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENG6611 ELECTRIC CIRCUIT THEORY 2 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non - sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of unctions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory co	mathematical te	chniques and practical advice for evaluat	ting deci	sions in	the design	and operation of	
ENGG534 ELECTRONICS 1 2 2 3 Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non -sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stok's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Mul	angineering syst	ame		510115 111	the design		
ENGG534ELECTRONICS 1223Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR.ENGG611ELECTRIC CIRCUIT THEORY 2223This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non-sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer.MATH504MULTIVARIATE CALCULUS223MATH504MULTIVARIATE CALCULUS223MATH504MULTIVARIATE CALCULUS223MATH504MULTIVARIATE course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223<	engineering syste	enis.					
ENGG534ELECTRUNICS IZZZAFundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR.ENGG611ELECTRIC CIRCUIT THEORY 2223This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer.MATH504MULTIVARIATE CALCULUS223This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiati	ENCOED4		2	2	2		
Fundamentals of semiconductors, PN junction diode, Analysis, application and design of diode circuits, Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifier, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS <td< td=""><td>ENGG534</td><td>ELECTRONICS 1</td><td>2</td><td>2</td><td>3</td><td></td></td<>	ENGG534	ELECTRONICS 1	2	2	3		
Zener diode characteristics and applications, special purpose diodes. Fundamentals of Bipolar junction transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND A ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles	Fundamentals of	semiconductors, PN junction diode, Ana	alysis, ap	plication	n and desi	gn of diode circuits,	
transistor (BJT), characteristic; amplifier types of CE, CC and CB, dc analysis and switch circuit analysis; different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND 2 2 3 ANALYSIS This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	Zener diode char	acteristics and applications, special purp	ose dio	des. Fun	damentals	s of Bipolar junction	
different biasing, Multistage Amplifiers, Differential Amplifier and CMRR. ENGG611 ELECTRIC CIRCUIT THEORY 2 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non-sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical approxi	transistor (BJT), o	characteristic; amplifier types of CE, CC a	ind CB, c	lc analys	is and swi	tch circuit analysis;	
ENGG611 ELECTRIC CIRCUIT THEORY 2 2 2 3 This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non-sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration. The	different biasing	, Multistage Amplifiers, Differential Amp	lifier and	CMRR.		-	
ENGG611ELECTRIC CIRCUIT THEORY 2223This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer.MATH504MULTIVARIATE CALCULUS223This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curv	0.						
This course deals with core theories, principles and concepts of the topics of sinusoidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration the course also includes laboratory components that make use of MATLAB as a tool in solving problems in the course also includes laboratory components that make use of MATLAB as a tool in solving p	ENGG611	ELECTRIC CIRCUIT THEORY 2	2	2	3		
This course deals with core theories, principles and concepts of the optics of subsolidal voltage and current on RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solvin	This course deals	with core theories, principles and cone	- 	- La topic		idal valtage and surrent	
On RLC circuits, vector algebra and its application to AC circuit analysis, sinusoidal and non- sinusoidal single phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	This course deals	with core theories, principles and conce	epts of th	ie topics	s of sinuso		
phase system, and three phase systems. It also covers reactance, impedance, resonance, power in AC circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	on RLC circuits, v	ector algebra and its application to AC cl	ircuit an	alysis, si	nusoidal a	nd non- sinusoidal single	
circuits, power factor correction and impedance network. The course evaluates the theorems which includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer. MATH504 MULTIVARIATE CALCULUS 2 2 3 This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	phase system, ar	nd three phase systems. It also covers rea	actance,	impeda	nce, reson	ance, power in AC	
includes Kirchhoff's laws, Mesh, Superposition, Nodal Analysis, Thevenin's, Norton, and Maximum power transfer.MATH504MULTIVARIATE CALCULUS223This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	circuits, power fa	actor correction and impedance network	. The co	urse eva	luates the	theorems which	
transfer.MATH504MULTIVARIATE CALCULUS223This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	includes Kirchho	ff's laws, Mesh, Superposition, Nodal An	alysis, Tl	nevenin'	s, Norton,	and Maximum power	
MATH504MULTIVARIATE CALCULUS223This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	transfer.						
MATH504MULTIVARIATE CALCULUS223This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.							
This is the third part of the course in calculus focused on vector and multi-variable calculus. Topics associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration and integration and integration and integration and integration wethods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	MATH504	MULTIVARIATE CALCULUS	2	2	3		
associated with the course demonstrate advanced knowledge and understanding of the following: vectors and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	This is the third p	part of the course in calculus focused on	vector a	nd multi	i-variable	calculus. Topics	
and vector operators, calculus of functions of several variables including partial differentiation and multiple integrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem, Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	associated with t	he course demonstrate advanced knowl	edge an	d under	standing o	f the following: vectors	
Intercention of sectoral variables including partial differentiation and interperintegrals, Lagrange multipliers, applications of partial differentiation, line integrals, Green's theorem,Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make useof MATLAB as a tool in solving problems in Multivariate Calculus.MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	and vector opera	ators calculus of functions of several var	iahles in	cluding	nartial diff	erentiation and multiple	
Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	integrals Lagran	ge multipliers, applications of partial diff	forontiat	ion line	integrals	Green's theorem	
Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND AND ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	Ctoles's the series	ge multipliers, applications of partial uni			integrais,	Green's theorem,	
of MATLAB as a tool in solving problems in Multivariate Calculus. MATH505 NUMERICAL METHODS AND ANALYSIS 2 2 3 This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	Stoke's theorem, and Divergence theorem. The course also includes laboratory components that make use						
MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	of MAILAB as a tool in solving problems in Multivariate Calculus.						
MATH505NUMERICAL METHODS AND ANALYSIS223This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.			1		1		
ANALYSIS This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	MATH505	NUMERICAL METHODS AND	2	2	3		
This course demonstrates critical knowledge and understanding of specialist theories, principles and concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.		ANALYSIS					
concepts of the study of numerical approximations and errors, numerical solutions of non-linear equations, interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	This course demonstrates critical knowledge and understanding of specialist theories, principles and						
interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	concepts of the study of numerical approximations and errors numerical solutions of non-linear equations						
accuracy of numerical differentiation and integration methods and solution of initial value problems using Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	interpolation and curve fittings, numerical differentiation and integration. The course also covers analysis of						
Euler Method. Analysis of accuracy of Euler's method. The course also includes laboratory components that make use of MATLAB as a tool in solving problems in Numerical Analysis.	accuracy of numerical differentiation and integration methods and solution of initial value problems using						
make use of MATLAB as a tool in solving problems in Numerical Analysis.	Eulor Mothod Analysis of accuracy of Eulor's mothod. The source also includes laboratory components that						
make use of MATLAB as a tool in solving problems in Numerical Analysis.	Euler Wethod. A	naiysis of accuracy of Euler's method. Th	e course	e also inc	ludes labo	bratory components that	
	make use of MA	ILAB as a tool in solving problems in Nur	nerical A	nalysis.			

Г

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 20 of 26

٦

CENG611	DATA COMMUNICATION AND	2	2	3	
	NETWORKING 1				
This course prov	ides discussion of data communications	and netv	vorking.	It includes	s a detailed discussion of
the different net	work models, concepts that have direct	effect or	n the effi	iciency of a	a network, network
technologies, dis	tributed computation, networking, comi	municati	on softv	vare, and s	security issues.
ENGG535	FLUID MECHANICS	3	0	3	
Fluid Mechanics	deals with the study associated with det	ails of th	ne prope	rties of th	e fluid and gas to adept
the necessary Kn	owledge related to fluid power concepts	s such as	the flui	d properti	es of compressible and
incompressible f	luids which include viscosity, Density, bu	lk modu	lus and o	compressi	bility. The topics covered
are Fluid Statics;	fluid mechanics fundamentals, including	g concep	ts of ma	ss and mo	mentum Integral
relations for con	trol volume: Bernoulli, energy and mome	entum e	quations	s. Flow in p	pipes; laminar and
turbulent flow, R	eynolds number and Moody chart, lamin	nar and t	turbulen	t boundar	y layer fundamentals.
The learning app	roach is to apply engineering principles	to perfo	rmance a	analysis an	d prediction of simple
fluid systems suc	h as hydraulics and pneumatics.				
ENGG613	ELECTRONICS 2	2	2	3	
This is an advanc	ed course in electronics which deals with	h concep	ot, analys	sis and des	sign of electronic circuits
using linear and	integrated devices. In this course include	e AC and	l DC ana	lysis, princ	piples and concepts of
frequency respo	nse of BJT amplifier and further extends	s the stu	dy to mւ	ultistage a	mplifier and various FET.
The other topics	include study and critical analysis of Ope	erationa	Amplifi	er, its app	lication, Feedback
topologies & exp	lore NE555 Timer and its applications.				
		1	[[
ENGG615	ELECTROMAGNETICS AND	3	0	3	
	ELECTRICAL MACHINES				
This course exam	ines the core theory, characteristics, co	nstructio	on opera	tion and a	pplication of static and
rotating electrica	al machines. It includes the detailed stud	y and an	alysis of	direct cur	rent motors, direct
current generators, AC Machines, special machines etc. The course offers a detailed understanding of the					
application of electromagnetic machines in the field of industry.					
ENCCC27	[1			
ENGG627	LOGIC CIRCUIT, SWITCHING THEORY	3	2	4	
	AND PROGRAMMABLE LOGIC				
	DEVICES				
This course prov	ides critical knowledge and understandir	ng of des	igning d	igital logic	circuits. It covers
number systems and conversion, Boolean algebra, algebraic manipulation, applications of Boolean algebra,					
Karnaugh maps, multi-level gate circuits, multiplexers, decoders, comparators, latches and flip-flops,					
registers and counters, programmable logic devices. Through laboratory and in-course projects, the					
students will creatively implement complex applications of digital logic circuits.					
		_			
MATH506	LINEAR ALGEBRA	2	2	3	
This course uses	specialist level skills to relate to and ada	pt main	and core	e theories	and concepts in the
study of matrices	s and determinants, and their application	ns in nur	nerical s	olutions o	f systems of linear
equations. It also includes important topics such as linear transformations, eigenvalues and eigenvectors,					

University of
Technology
Bahrain

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 21 of 26

University of
Technology
Bahrain

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 22 of 26

intelligent control systems. Higher level software programming will be used for critically analyzing,					
evaluating, and synthesizing the implemented fuzzy logic and neural networks systems.					
MATH507	OPTIMIZATION METHODS	3	0	3	
The course takes	a unified view of optimization and cove	rs the m	ain areas	of applic	ation of core
optimization alg	orithms. The topics include linear optimi	zation, r	obust opt	imizatior	n, network flows,
dynamic optimiz	ation and non-linear optimization.		·		
		1			
MECH621	LINEAR SYSTEMS	2	2	3	
This course deals	s with detailed knowledge and understar	nding of	theories f	or linear	systems. This module
develops a detai	led understanding of the fundamentals o	of linear	systems a	nalysis a	nd design using the state
space approach.	Topics covered include state space repre	esentatio	on of syste	ems; solu	ition of state equations;
stability analysis	using Lyapunov methods; controllability	and obs	ervability	; linear s	tate feedback design;
and state observ	er. MATLAB is used for analyzing and sin	nulating	Linear sys	stems.	
MECH623	HYDRAULICS & ELECTRO-HYDRAULICS	3	2	4	
This course deals	s with the core concepts and physical pri	nciples o	of hydraul	ics, circui	it symbols and
components of a	hydraulic and Electro-Hydraulics system	n. It also	covers th	e study o	f the components of the
power supply, H	ydraulic Power Generation, control valve	es, actua	tors and a	ccessorie	es, and the extended
cylinders. Studer	nts will also learn to design and impleme	nt hydra	ulic and e	lectro-hy	draulic systems for
complex industri	al applications. Students will critically an	alyze, ev	/aluate ar	nd synthe	size the Electrical circuit
Design including	electrical components and memory Circ	uit <i>,</i> Time	e lag relay	s, Pressu	re Control, Speed
control valve. Ha	inds-on simulation on advanced industria	al applica	ations rela	ated to h	ydraulics and electro
hydraulics is con	ducted for the students using the Festo I	hydrauli	cs module	s.	
MECH624	PROGRAMMABLE LOGIC	3	2	4	
	CONTROLLERS				
The course deals	with core concepts and theories of the	hardwar	e and soft	ware of	Programmable logic
controllers. This	course also deals with programming, cor	nnecting	, and test	ing Progr	ammable Logic
Controllers (PLCs	s) for control of complex industrial/comm	nercial p	rocesses.	It covers	sensor interfacing,
application of PL	Cs in some specific Industrial process, ar	nd utiliza	tion of a l	hand-held	d programmer in
troubleshooting	PLCs. Hands-on simulation is conducted	for the s	tudents t	o unders	tand the critical PLC
implementation process in industry using advanced tools such as Festo PLC modules and CodeSys software.					
MECH641	PROCESS INSTRUMENTATION AND	3	2	4	
	CONTROL	_			
This course deals with the core concepts and theories of industrial process control and the instrumentation					
used for it. It elaborates on various sensors used in the process industry and special emphasis is given on					
measurement sensors such as Pressure transmitter, Ultrasonic sensors, thermistors and proportional					
valves. Students will learn the working principle, specifications, design and selection aspects used for					
sensing complex process parameters, along with merits and limitations of each type of sensor. The course					
will also build the detailed knowledge of the participants on working principles of control loop components,					
control strategies, and PID controller fundamentals including terminology, algorithms and advanced					
methods. A spec	ial emphasis on real life implementation	s. case s	tudies and	dinterna	tional standards would
ensure students to critically analyze, evaluate and synthesize with their day-to-day practice.					
ensure students to critically analyze, evaluate and synthesize with their day-to-day practice.					

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 23 of 26

ENGG639	PROFESSIONAL ETHICS AND	3	0	3	
	ENGINEERING LAWS				
This course cove	rs topics in the core theories and concep	ots of eth	nics, law,	contracts	, intellectual property,
the responsible e	engineer, moral thinking, risk/safety/liab	ility, em	ployer re	esponsibili	ties, product liability,
and environment	tal responsibilities. The course deals with	n severa	l case stu	udies of et	hical problems in
engineering. It di	iscusses the core concepts of environme	ntal prot	tection a	ind sustair	nability to understand
how they relate	to engineering ethics. The course is inter	nded to p	promote	greater re	eflection by engineers on
their activities to	better understand the social dimension	s of engi	ineering	practice. I	t also provides a
historical perspe	ctive on society's environmental concerr	ns, and d	liscusses	environm	iental statutes, our
regulatory syster	n, approaches to preventing and mitigat	ing envi	ronment	al probler	ns, and the elements of
an effective envi	ronmental management system.				
MECH639	MICROCONTROLLER		2	3	
This course provi	ides critical knowledge and understandir	ng of mic	crocontro	oller-base	d systems design,
development and	d implementation. It includes embedded	l system	types, n	nicrocontr	oller architecture,
programming, di	gital and analog I/O interfacing, task sch	eduling,	interrup	ot and time	ers management, and
communication i	nterfaces. Through laboratory and in-co	urse pro	jects, th	e students	will creatively
implement comp	blex applications of microcontroller-base	d system	15.		
		2	2	4	
IVIECH642		3	Z	4 isis a david	
Inis course discu	isses core theories, principles and conce	pts of m	achine v	ision devic	ces and techniques and
learns about com	puter vision systems and digital image p		ig. It also	o relates to	ical mathematical
imago procossin	n computer vision and mage processing	ction ac	SIS WIII L	vicion The	ical, mathematical,
nroper lab activit	g, pattern recognition, and reature extra	broadth	and dor	vision. The	ecturing materials. The
main tonics will h	be as: Machine vision concents. Image ac	rauisitio	n Lighti	ng Image	formation Image
conversion Imag	the processing and analysis. Image enhance	cement	Fdae de	tection an	d Image segmentation
	se processing and analysis. Indge enhand	centerit,	Luge ue		a mage segmentation.
MECH643	ROBOT KINEMATICS, DYNAMICS AND	3	2	4	
	CONTROL		_		
This course facili	tates the core learning and understandir	ng of rob	ot mani	pulators fo	or students to
understand com	plex design and applications of robots in	industri	al applic	ation. Suc	cessful completion
allows students to formulate the kinematics and dynamic modelling of robotic manipulators consisting of a					
serial chain of rigid bodies and to implement control algorithms with sensory feedback during the lab					
sessions. Students will gain specialist skills in dealing with complex control architecture and manipulator					
structure typical to new-generation robots.					
	<u> </u>				
MECH644	MODULAR PRODUCTION SYSTEM	3	2	4	
This course integrates core theories of mechanical design, computer control and electronic components in					
designing an Industrial automation system. Students will be provided with the detailed knowledge and					
understanding on various automation strategies, automation layouts, material handling devices used in					
assembly lines, a	assembly lines, automated assembly lines and computer integrated manufacturing. It discusses the step by				
step manner of c	lesigning, assembling, and programming	a modu	lar statio	on based o	on the given system
requirement. The	requirement. The laboratory uses Codesys software for PLC programming and advanced FESTO educational				
modules in simul	lating processes in the modular producti	on syste	m.		

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 24 of 26

ENGG638	ENGINEERING AND PROJECT	3	0	3	
This secures was	MANAGEMEN I		ia at maan		
Inis course provi	des critical knowledge and understandir	ig of pro	ject mar	nagement	and the essential tools
needed to delive	r successful projects on time and on bud	iget from	n the sta	napoint o	f the manager, who must
skillfully organize	e, plan, implement and control non-routi	ne activi	ities to a	chieve scr	nedule, budget and
performance act	ivities. Topics include project life cycles,	principle	es and co	oncepts of	strategic management
process in projec	t selection and organization, planning, b	udgeting	g and scl	neduling s	ystems. It also covers
planning and con	trol methods such as PERT- CPM, Gantt	Charts, e	earned v	alue techi	niques, project audits,
and risk manager	ment to critically evaluate various projec	t manag	gement s	ituations.	
MECH651	INDUSTRIAL ATTACHMENT	0	6	6	
This 6-unit course	e is a practicum course where the stude	nts are e	xposed	to an actu	al work environment.
The students are	required to complete 240 hours of on-si	ite traini	ng. They	are sent	to work environments
under the superv	vision of a practicum professor. Moreove	er, the st	udents s	ubmit a re	eport and a performance
evaluation made	by the on- site supervisor.				
MECH652	MECHATRONICS ENGINEERING	0	6	3	
	DESIGN PROJECT A				
This is the first c	of two courses in Mechatronics Enginee	ring des	ign sequ	lence whi	ch prepares students for
engineering prac	tice through a culminating major design	n experie	ence or	capstone	based on the knowledge
and skills acquire	ed in foundation and core courses and	l incorpo	orating a	appropriat	e engineering standards
(IEEE, ISO) as an i	integral part and with due c onsideration	of multi	iple reali	stic const	raints tradeoffs.
This is a group su	pervised design project in which studen	ts analyz	ze, speci	fy, design,	construct, evaluate and
adapt physical co	omputing in various applications such as	in smart	environ	ments and	d embedded systems.
They also incorpo	prate design standards and make decisio	n as a re	esult of r	nultiple de	esign
tradeoff/constrai	ints (economics, environmental, social, p	olitical,	ethical,	health and	d safety,
manufacturability	y, and sustainability) analysis and evalua	ition as p	oart of th	ne design j	process.
MECH645	TECHNOPRENEURSHIP	3	0	3	
The course deals	with the study of entrepreneurship in IT	industr	y by app	lying the o	core theories and
principles of entr	epreneurship and management in IT bus	siness. T	he cours	e covers t	ypes of
entrepreneurships, legal factors related to the project like Business act, company act, technology act and					
Industrial act, developing a business plan by integrating business proposal writing skill, software skills,					
innovation and creativity skills. It also covers advanced level topics like risk management, configuration					
management and quality management.					
MECH661	MECHATRONICS ENGINEERING	0	6	3	
	DESIGN PROJECT B				
This course is a c	ontinuation of Mechatronics Engineering	g Design	A (MEC	H652) whi	ch enables students to
design a system, component, or process to meet desired needs within realistic constraints through a					
culminating major design experience or capstone based on the knowledge and skills acquired in foundation					
and core courses and incorporating appropriate engineering standards (IEEE, ISO) as an integral part and					
with due conside	with due consideration of multiple realistic constraints tradeoffs.				
This is a group supervised design project in which students analyze, specify, design, construct, evaluate and					

University of
Technology
Bahrain ²

Doc. No.	QR-AAD-01			
Revision No.	01			
Date of Effectivity	01-09-23			

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 25 of 26

adapt physical computing applications in smart environments and embedded systems. They also incorporate design standards and make decisions as a result of multiple design tradeoff/constraints (economics, environmental, social, political, ethical, health and safety, manufacturability, and sustainability) analysis and evaluation as part of the design process. MECH653A DATA COMMUNICATION AND 2 2 3 **NETWORKING 2** This course provides an in-depth and advanced discussion of routing technology. It integrates the core theories, concepts, functions and operations of a router including the principles and applications of routing protocols. Topics include router components and configuration; Unicast and Multicast routing protocols: RIPv1, RIPv2, EIGRP, OSPF and BGP; VLSM and IPv6. The students make use of a range of approaches including the Packet Tracer, GNS3 and the actual network devices in the laboratory in performing advanced and complex network configurations using the different routing protocols and in the critical analysis of network requirements, issues and/or problems. MECH653D DIGITAL CONTROL SYSTEMS 2 2 Introduction to Digital Control, Discrete-Time Systems (Difference equations, The z-transform, z-Transform solution of difference equations, The time response of a discrete-time system, The modified z-transform, The sampling theorem), Modeling of Digital Control Systems, Stability of Digital Control Systems, Digital Control System Design (z-Domain root locus, Digital implementation of analog controller design, Direct zdomain digital controller design, Frequency response design, Direct control design), Discrete-time State-Space Representation, The solution of linear state-space equations, The transfer function matrix, Stability of state-space realizations, Controllability and stabilizability, Observability and detectability, Detectability, State-space realizations, State Feedback Control, Pole placement, State estimation, Observer state feedback, Optimal control, The linear quadratic regulator. MECH653C SYSTEM MODELING AND 2 2 3 SIMULATION This course examines core theories and principles of engineering system modeling and simulation methods, as well as numerical and computer-based solution techniques utilized in industrial and engineering environments. Techniques for finding solutions to these systems include graphical, algebraic, numerical, state space, simulation and computational processes. Case studies in industry and engineering applications are used to illustrate the techniques and modeling concepts. Examples of simulation and analysis methods will be related to the linear and non-linear, deterministic and non-deterministic systems. MECH662A WIRELESS COMMUNICATIONS 2 2 3 This course aims to develop the core knowledge of communications theories and their applications in digital communications. The course covers the structure of the digital communication systems, analog modulation technique, digital modulation techniques, probability of error in digital communication system, multiple access techniques, channels and source encoding, mobile communication systems. MECH662D POWER PLANT 2 2 3 The course deals with the major systems and components practice related to power plan to generate electrical power such as Boiler, Turbine, Condenser and pumps. The topics covered are thermodynamic

University of
Technology
Bahrain

Doc. No.	QR-AAD-01			
Revision No.	01			
Date of Effectivity	01-09-23			

BSME PROGRAMME SPECIFICATIONS 2022-2023

Page 26 of 26

cycles; ranking cycle modified Rankin cycle with re-heater and feed water heater, also steam, gas and combined cycle power plant are covered. This course required the student to integrate all these topics to analyze and design the deferent type of power plant systems and components.

MECH662C	DIGITAL SIGNAL PROCESSING	2	2	3	
The course deals with the detailed study of the core theories, principles and concents of digital signal					

The course deals with the detailed study of the core theories, principles and concepts of digital signal processing; discrete convolution; Z-transform; sampled data system; digital filters; discrete Fourier transforms; fast Fourier transforms. DSP Applications. Introduction of 2-D signal (image) processing. This course is designed to provide students with a comprehensive treatment of the important issues in design, implementation and applications of digital signal processing theory and algorithm. Further, computer simulation exercises are intended to familiarize the student with implementation aspects and the application of theoretical knowledge to practical problems.